THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сети напряжением до 1 кВ в нашей стране в подавляющем большинстве случаев выполняются в режиме глухозаземленной нейтрали. Это означает, что нейтральная точка вторичной обмотки трансформатора на подстанции накоротко соединяется с заземляющим устройством.

Таким образом, между любой фазой в сети 0,4 кВ и землей всегда имеется напряжение, получившее название «фазного» и имеющее величину 220 вольт. Но в некоторых случаях используются сети 0,4 кВ с изолированной нейтралью (система IT).

Такое может быть, например, если вторичные обмотки трансформатора соединяются в «треугольник» и нейтральная точка просто отсутствует. Или, предположим, по каким-то причинам недопустимо аварийное отключение сети, связанное с коротким замыканием на землю .

Из-за того, что электрическое соединение между проводниками сети и землей в сетях IT отсутствует, то однофазное замыкание на землю уже нельзя назвать «коротким». Однако нельзя и считать, что ток утечки при таком замыкании будет отсутствовать вовсе.

Дело в том, что изоляция жил питающего кабеля не является абсолютным диэлектриком. То же самое можно сказать и обо всех изоляторах, имеющихся в сети, а также о прочих изоляционных материалах.

Все они имеют какую-то минимальную проводимость, поэтому ток утечки через них имеется всегда. И он тем больше, чем больше протяженность линии. Кроме того, каждую жилу питающего кабеля можно представить как одну из обкладок конденсатора.

Второй обкладкой является земля, а диэлектрик – это слой изоляции и воздушный слой между кабелем и ближайшими токоведущими частями, не находящимися под напряжением. Емкость такого конденсатора будет тем больше, а сопротивление цепи утечки – тем меньше, чем более протяженной является линия.

С учетом сопротивления изоляции и удельной электроемкости сеть с изолированной нейтралью можно представить в виде цепи замещения, как показано на рисунке. Каждая фаза соединена с землей посредством параллельно включенного конденсатора и резистора.

Благодаря этим элементам цепи замещения при однофазном замыкании на землю в сети возникает ток утечки по цепи: «пострадавшая фаза - земля - элементы цепи замещения - исправные фазы». Практически при любых условиях в сетях с изолированной нейтралью 0,4 кВ этот ток невелик и может исчисляться миллиамперами.

Несмотря на то, что ток однофазного замыкания на землю в сетях с изолированной нейтралью относительно мал, а сеть после его возникновения по-прежнему может работать, такое замыкание ведет к аварийному режиму работы сети.

Необходимо учитывать, что в подобных сетях при однофазном замыкании на землю резко возрастает напряжение между исправными фазами и землей. Фактически это напряжение становится равно линейному – 380 вольт. Это чревато поражением электрическим током для электротехнического и электротехнологического персонала.

А, кроме того, однофазное замыкание на землю в сетях с изолированной нейтралью способствует пробою изоляции и возникновению замыкания на землю уже в двух других фазах.

По сути, возникает вероятность короткого межфазного замыкания с характерными сверхтоками, для защиты от которых потребуются автоматические выключатели или плавкие вставки.

Вместе с тем малая величина тока однофазного замыкания на землю в сетях IT становится причиной того, что определить такое замыкание и отключить его при помощи автоматов или предохранителей просто невозможно – необходима дополнительная релейная аппаратура, сигнализирующая об аварии.

Таким образом, сети IT требуют большего количества аппаратов защиты и сигнализации, а к персоналу, обслуживающему такие сети, можно предъявлять повышенные требования по квалификации.


Электрические сети 35 кВ и ниже работают с изолированной нейтралью обмоток трансформаторов или заземлением через дугогасящие реакторы, сети 110 кВ и выше - с эффективным заземлением нейтралей обмоток трансформаторов. При необходимости компенсации емкостных токов в сетях 6, 10 и 35 кВ на ПС устанавливаются дугогасящие заземляющие реакторы с плавным или ступенчатым регулированием индуктивности. На напряжении 6 и 10 кВ дугогасящие реакторы подключаются к нейтральному выводу отдельного трансформатора, подключаемого к сборным шинам через выключатель. Количество и мощность дугогасящих реакторов 6-10 кВ определяются на основании данных энергосистемы. На напряжении 35 кВ дугогасящие реакторы присоединяются, как правило, к нулевым выводам соответствующих обмоток трансформаторов через развилку из разъединителей, позволяющую подключать их к любому из трансформаторов. Последствия от замыкания на землю в зависимости от вида электросети, значения емкостных токов и способы выполнения защит различны. Так, в сетях с изолированной нейтралью однофазное замыкание на землю не вызывает КЗ, поскольку в месте замыкания проходит ток малой величины, обусловленный емкостью двух фаз на землю. Значительные емкостные токи компенсируются включением в нейтраль трансформатора дугогасящего реактора. В результате компенсации остается малый ток, который не в состоянии поддерживать горение дуги в месте замыкания, поэтому поврежденный участок не отключается. Однофазное замыкание на землю сопровождается повышением напряжения на неповрежденных фазах до линейного, а при замыкании через дугу возможно возникновение перенапряжений, распространяющихся на всю электрически связанную сеть. Для предохранения трансформаторов в сетях с изолированной нейтралью или с компенсацией емкостных токов от воздействия повышенных напряжений изоляцию их нейтралей выполняют на тот же класс напряжения, что и изоляцию линейных вводов. При таком уровне изоляции не требуется применения средств защиты нейтралей, кроме вентильных разрядников, включаемых параллельно дугогасящему реактору. В сетях с эффективным заземлением нейтрали однофазное замыкание на землю приводит к КЗ, что видно из 2.

Ток КЗ проходит от места повреждения по земле к заземленным нейтралям трансформаторов Т1 и Т2, распределяясь обратно пропорционально сопротивлениям ветвей. Защита от замыкания на землю отключает поврежденный участок. Через трансформаторы Т3 и Т4 ток однофазного КЗ не проходит, поскольку их нейтрали не имеют глухого заземления. Однофазное замыкание на землю является причиной наибольшего числа повреждений в электросетях (по статистике - до 80 % случаев всех КЗ), и оно считается тяжелым видом повреждения. Поэтому для его предотвращения (снижения возможности возникновения) принимают специальные меры, например, такие как частичное разземление нейтралей трансформаторов. Эта мера не касается автотрансформаторов, поскольку они рассчитаны для работы с обязательным заземлением концов общей обмотки. Число заземленных нейтралей на каждом участке по возможности выбирается минимальным и должно определяться расчетом. Основными требованиями к защите заземленных участков являются требования к релейной защите по поддержанию на определенном уровне токов замыкания на землю и обеспечение защиты изоляции разземленных нейтралей от перенапряжений. Последнее требование тем более важно, что все отечественные трансформаторы 110–220 кВ имеют пониженный уровень изоляции нейтралей. При неполнофазных отключениях (включениях) ненагруженных трансформаторов с изолированной нейтралью, то есть когда коммутационная аппаратура (выключатели, разъединители или отделители) оказывается включенной не тремя, а двумя или даже одной фазой, переходный процесс сопровождается кратковременными перенапряжениями. Надежной защитой от таких процессов является применение вентильных разрядников. На практике, помимо воздействия кратковременных перенапряжений, нейтрали трансформаторов могут оказаться под воздействием фазного напряжения промышленной частоты, которое опасно как для изоляции трансформатора, так и для разрядника в его нейтрали. Опасность усугубляется еще тем, что такое напряжение может длительно оставаться незамеченным при неполнофазных режимах коммутации выключателями, разъединителями и отделителями ненагруженных трансформаторов, а также при аварийных режимах. При неполнофазном включении ненагруженного трансформатора, то есть при пофазной коммутации, его электрическое и магнитное состояние изменяется. Если включение трансформатора осуществляется со стороны обмотки, соединенной в звезду, то при наличии двух фаз напряжение на нейтрали и на отключенной фазе будет равно половине фазного. Если подать напряжение по одной фазе, то все обмотки трансформатора и его нейтраль будут находиться под напряжением включенной фазы. Во избежание негативных последствий и предупреждения аварии неполнофазный режим должен быть немедленно устранен. В идеале наилучшей мерой защиты в таких случаях является глухое заземление нейтралей обмоток трансформаторов. Поэтому перед включением или отключением от сети трансформаторов 110–220 кВ, у которых нейтраль защищена вентильными разрядниками, следует наглухо заземлять нейтраль включаемой или отключаемой обмотки, если к тем же шинам или к питающей линии не подключен другой трансформатор с заземленной нейтралью. Глухое заземление нейтрали трансформатора облегчает процессы отключения и включения намагничивающих токов, вследствие чего дуга при отключении трансформатора горит менее интенсивно и быстро гаснет. Отключение заземляющего разъединителя в нейтрали трансформатора, работающего с разземленной нейтралью, следует производить сразу же после включения и проверки полнофазного включения коммутационного аппарата. Не допускается длительно оставлять нейтраль заземленной. Заземлением нейтрали изменяется распределение токов нулевой последовательности и нарушается селективность действия защит от однофазных замыканий на землю. В настоящее время широкое распространение получили упрощенные схемы питания от одиночных и двойных проходящих линий 110–220 кВ. Число присоединяемых к ним трансформаторов может достигать 4–5. Если к такой линии присоединены два и более трансформаторов, то целесообразно хотя бы у одного из них иметь глухое заземление нейтрали, что позволит в случае неполнофазной подачи напряжения на линию вместе с подключенными к ней трансформаторами избежать появления опасных напряжений на изолированных нейтралях других трансформаторов. На линейных вводах всех подключенных к линии трансформаторов образуется симметричная трехфазная система напряжений, при которой напряжение на изолированной нейтрали трансформатора будет равно нулю. В сетях с эффективно заземленной нейтралью трансформаторы при возникновении аварийных режимов подвержены опасным перенапряжениям. Это может иметь место, когда при обрыве и соединении провода с землей выделяется участок сети, не имеющей заземленной нейтрали со стороны источника питания. На таком участке напряжение на нейтралях трансформаторов становится равным по величине и обратным по знаку ЭДС заземленной фазы, а напряжение неповрежденных фаз относительно земли повышается до линейного. Возникающие при этом из-за колебательного перезаряда емкостей фаз на землю перенапряжения представляют опасность для изоляции трансформаторов и другого оборудования данного участка. В сетях с эффективно заземленной нейтралью на случай перехода части сети в режим работы с изолированной нейтралью предусматривают защиты от замыкания на землю, реагирующие на напряжение нулевой последовательности 3U о, которое появляется на зажимах разомкнутого треугольника ТН при соединении фазы с землей. Такие защиты действуют на отключение выключателей трансформаторов с незаземленной нейтралью. Их настраивают так, чтобы при однофазном повреждении первыми отключались трансформаторы с изолированной нейтралью, а затем трансформаторы с заземленной нейтралью. На ПС 110 кВ, где трансформаторы не могут получать подпитку со стороны СН и НН, такие защиты от замыкания на землю не устанавливаются и глухое заземление нейтралей не производится. На основании изложенного оперативному персоналу необходимо выполнять следующие рекомендации: при выводе в ремонт трансформаторов, а также при изменениях схем ПС необходимо обеспечивать режим заземления нейтралей, принятый в энергосистеме, и при переключениях не допускать в сетях с эффективно заземленной нейтралью выделения участков без заземления нейтралей у питающих сеть трансформаторов; во избежание автоматического выделения таких участков на каждой системе шин ПС, где возможно питание от сети другого напряжения, рекомендуется иметь трансформатор с заземленной нейтралью с обязательной токовой защитой нулевой последовательности; при выводе в ремонт трансформатора, нейтраль которого заземлена, необходимо предварительно заземлить нейтраль другого параллельно работающего с ним трансформатора; без изменения положения нейтралей других трансформаторов производится отключение трансформаторов с изолированной нейтралью или нейтралью, защищенной вентильным разрядником.

В электрических сетях России приняты следующие режимы работы нейтрали :

изолированная нейтраль (небольшие емкостные токи замыкания на землю; напряжения 6-5-35 кВ и 0,4 кВ);
компенсированная нейтраль (определенные превышения значений емкостных токов; напряжения 6+35 кВ);
эффективно заземленная (глухозаземленная) нейтраль (большие токи замыкания на землю; напряжения > 110 кВ; 0,4 кВ);
высокоомное и низкоомное заземление нейтрали (напряжения 6, 10 кВ).

Сокращения:

ОЗЗ - Однофазное замыкание на землю
I с сум - суммарный емкостный ток
U ф mах - максимальное фазное напряжение
U ф ном - номинальное фазное напряжение

Таблица 1. Характеристика режима изолированной нейтрали

Достоинства

Недостатки

1. Возможность работы сети с ОЗЗ в течение ограниченного времени до принятия мер по безаварийному отключению поврежденного элемента.

2. Не требуются дополнительная аппаратура и затраты на заземление нейтрали.

3. Возможность самогашения дуги и самоликвидации части ОЗЗ.

4. Безопасность длительного воздействия перенапряжений, возникающих в переходных режимах ОЗЗ, для элементов с нормальной изоляцией.

5. Простое (в большинстве случаев) решение проблемы защиты и селективной сигнализации устойчивых ОЗЗ.

1. Высокая вероятность возникновения наиболее опасных дуговых перемежающихся ОЗЗ.

2. Высокая вероятность вторичных пробоев изоляции и перехода ОЗЗ в двойные и многоместные замыкания за счет перенапряжений до 3,5U ф mах при дуговых замыканиях.

3. Значительное (в несколько раз) увеличение действующего значения тока в месте повреждения при дуговых перемежающихся ОЗЗ за счет свободных составляющих переходного процесса.

4. Возможность существенных повреждений электрических машин током в месте повреждения, прежде всего, при дуговых перемежающихся ОЗЗ.

5. Возможность возникновения феррорезонансных процессов в сети и повреждений ТН.

6. Высокая степень опасности для человека и животных, находящихся вблизи места ОЗЗ.

7. Ограничения по величине I с сум на развитие сети.

8. Высокая степень помех по ЛЭП при дуговых ОЗЗ.

Таблица 2. Характеристика режима резонансного заземления нейтрали (компенсированная нейтраль)

Достоинства

Недостатки

1. Возможность работы сети с ОЗЗ до принятия мер по безаварийному отключению поврежденного элемента.

2. Уменьшение тока в месте повреждения (при резонансной настройке ДГР остаточный ток содержит только некомпенсируемые активную составляющую и высшие гармоники).

3. Значительное снижение скорости восстановления напряжения на поврежденной фазе после обрыва дуги тока ОЗЗ.

4. Высокая вероятность (с учетом пп. 2

и 3) самогашения дуги и самоликвидации большей части ОЗЗ (при ограниченных значениях остаточного тока в месте повреждения).

5. Практически исключается возможность возникновения дуговых перемежающихся ОЗЗ.

6. Уменьшение кратности перенапряжений на неповрежденных фазах по сравнению с изолированной нейтралью (до значений 2,5U ф ном при первом пробое изоляции или дуговых прерывистых ОЗЗ).

7. Безопасность длительного воздействия перенапряжений в установившемся и переходном режимах ОЗЗ для элементов

с нормальной изоляцией.

8. Исключается возможность возникновения феррорезонансных процессов в сети.

9. Уменьшение влияния дуговых ОЗЗ на линии связи.

1. Дополнительные затраты на заземление нейтрали через ДГР и устройства для автоматического управления настройкой компенсации.

2. Трудности с решением проблемы защиты и селективной сигнализации ОЗЗ.

3. Возможность возникновения прерывистых дуговых ОЗЗ, сопровождающихся перенапряжениями на неповрежденных фазах до 2,5

4. Увеличение вероятности возникновения дуговых прерывистых ОЗЗ и максимальных перенапряжений на неповрежденных фазах до (2,6-3) при расстройках компенсации.

5. Возможность (с учетом пп. 3 и 4) вторичных пробоев в точках сети с ослабленной изоляцией.

6. Невозможность скомпенсировать (без использования специальных устройств) в месте повреждения активную составляющую и высшие гармоники.

7. Увеличение (с учетом п. 6) остаточного тока в месте повреждения с ростом суммарного емкостного тока сети.

8. Ограничения (с учетом п. 7) на развитие сети.

Таблица 3. Характеристики режима высокоомного заземления нейтрали

через резистор

Достоинства

Недостатки

1. Возможность работы сети с ОЗЗ до принятия мер по безаварийному отключению поврежденного элемента (при ограниченных значениях тока замыкания в месте повреждения).

2. Возможность самогашения дуги и самоликвидации части ОЗЗ (при ограниченных значениях тока ОЗЗ в месте повреждения).

3. Практически исключается возможность возникновения дуговых перемежающихся ОЗЗ.

4. Уменьшение кратности перенапряжений на неповрежденных фазах по сравнению с изолированной нейтралью (до значений 2,5 при первом пробое изоляции или дуговых прерывистых ОЗЗ).

5. Безопасность длительного воздействия перенапряжений в переходных режимах ОЗЗ для элементов с нормальной изоляцией.

6. Практически исключается возможность возникновения феррорезонансных процессов в сети.

7. Простое решение проблемы защиты и сигнализации устойчивых ОЗЗ.

2. Увеличение тока в месте повреждения.

3. Возможность возникновения прерывистых дуговых ОЗЗ, сопровождающихся перенапряжениями на неповрежденных фазах до 2,5 .

4. Возможность (с учетом п. 3) вторичных пробоев в точках сети с ослабленной изоляцией.

5. Ограничения на развитие сети по величине I с сум.

6. Утяжеление условий гашения дуги в месте повреждения по сравнению с сетями, работающими с изолированной нейтралью или с компенсацией емкостного тока ОЗЗ.

7. Большая мощность заземляющего резистора (десятки киловатт) и проблемы с обеспечением его термической стойкости при устойчивых ОЗЗ.

Таблица 4. Характеристики режима низкоомного заземления нейтрали

через резистор

Достоинства

Недостатки

1. Практически исключается возможность дальнейшего развития повреждения, например, перехода ОЗЗ в двойное замыкание на землю или междуфазное КЗ (при быстром отключении поврежденного элемента).

2. Простое решение проблемы защиты от ОЗЗ.

3. Полностью исключается возможность возникновения дуговых прерывистых ОЗЗ (при достаточном для их подавления значении накладываемого активного тока).

4. Уменьшается длительность воздействия на изоляцию элементов сети перенапряжений на неповрежденных фазах в переходных режимах ОЗЗ.

5. Исключается возможность возникновения феррорезонансных процессов в сети.

6. Уменьшается вероятность поражения людей или животных током ОЗЗ в месте повреждения.

1. Дополнительные затраты на заземление нейтрали сети через резистор.

2. Невозможность работы сети с ОЗЗ.

3. Увеличение числа отключений оборудования и линий из-за переходов кратковременных самоустраняющихся (при других режимах заземления нейтрали) пробоев изоляции в полные (завершенные) пробои.

4. Возможность увеличения в некоторых случаях объема повреждения оборудования (из-за увеличения тока ОЗЗ).

5. Возможность возникновения дуговых прерывистых ОЗЗ при недостаточно больших значениях накладываемого активного тока.

6. Возможность вторичных пробоев в точках с ослабленной изоляцией за счет перенапряжений на неповрежденных фазах (при первом пробое изоляции до 2,5) до ключения защитой поврежденного элемента.

7. Увеличение числа отключений выключателей элементов сети.

При глухом заземлении нейтрали замыкание одной фазы на землю является однофазным КЗ, характеризующимся большим током. Напряжение фаз по отношению к земле при этом не выше фазного номинального; исключаются перемежающиеся дуги. Однофазные КЗ отключаются автоматически. Отключение приводит к перерывам в электроснабжении потребителей.

Другим недостатком глухого заземления (глухозаземленной) нейтрали является значительное усложнение и удорожание заземляющих устройств. Последнее связано с тем, что для систем с большим током замыкания на землю ПУЭ допускают максимальное сопротивление заземляющего контура 0,5 Ом, поэтому число заземляющих электродов должно быть значительным. Вследствие значительного тока однофазного КЗ, который может быть больше тока трехфазного КЗ, глухо заземляют не все нейтрали трансформаторов.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама