THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

1. Линии вектора . Для графического изображения электростатических полей используют линии вектора - они проводятся так, чтобы в каждой точке линии вектор был направлен по касательной к ней (рис.3.6). Линии нигде не пересекаются, они начинаются на положительных зарядах, заканчиваются на отрицательных или уходят в бесконечность. Примеры графического изображения полей точечных зарядов приведены на рис.3.6,б,в,г. Видно, что


для одного точечного заряда линии представляют собой прямые линии, выходящие или входящие в заряд. В случае однородного электрического поля (рис.3.6,д), в каждой точке которого вектор одинаков и по модулю, и по направлению, линии представляют собой прямые линии, параллельные друг другу и отстоящие друг от друга на одинаковом расстоянии.

Графическое изображение полей с помощью линий позволяет наглядно видеть направление кулоновской силы, действующей на точечный заряд, помещенный в данную точку поля, что является удобным для качественного анализа поведения заряда.

Обычно линии проводят так, чтобы их густота (количество линий, пронизывающих перпендикулярную к ним плоскую поверхность фиксированной площади) в каждой точке поля определяла числовое значение вектора . Поэтому по степени близости линий друг другу можно судить об изменении модуля и соответственно об изменении модуля кулоновской силы, действующей на заряженную частицу в электрическом поле.

2. Эквипотенциальные поверхности . Эквипотенциальная поверхность – это поверхность равного потенциала, в каждой точке поверхности потенциал φ остается постоянным. Поэтому элементарная работа по перемещению заряда q по такой поверхности будет равна нулю: . Из этого следует, что вектор в каждой точке поверхности будет перпендикулярен к ней, т.е. будет направлен по вектору нормали (рис.3.6,г). Действительно, если бы это было не так, то тогда существовала бы составляющая вектора (), направленная по касательной к поверхности, и, следовательно, потенциал в разных точках поверхности был бы разным ( ¹const), что противоречит определению эквипотенциальной поверхности.



На рис.3.6 приведено графическое изображение электрических полей с помощью эквипотенциальных поверхностей (пунктирные линии) для точечного заряда (рис.3.6,б,в, это сферы, в центре которых находится точечный заряд), для поля, созданного одновременно отрицательным и положительным зарядами (рис.3.6,г), для однородного электрического поля (рис.3.6,д, это плоскости, перпендикулярные к линиям ).

Условились проводить эквипотенциальные поверхности так, чтобы разность потенциалов между соседними поверхностями была одинаковой. Это позволяет наглядно видеть изменение потенциальной энергии заряда при его движении в электрическом поле.

Тот факт, что вектор перпендикулярен к эквипотенциальной поверхности в каждой ее точке, позволяет достаточно просто переходить от графического изображения электрического поля с помощью линий к эквипотенциальным поверхностям и наоборот. Так, проведя на рис.3.6,б,в,г,д пунктирные линии, перпендикулярные к линиям , можно получить графическое изображение поля с помощью эквипотенциальных поверхностей в плоскости рисунка.

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле . Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля - действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда - небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля .

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

Напряженность электрического поля - векторная физическая величина. Направление вектора в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим . Во многих случаях для краткости это поле обозначают общим термином - электрическое поле

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции.

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю

Это поле называется кулоновским . В кулоновском поле направление вектора зависит от знака заряда Q : если Q > 0, то вектор направлен по радиусу от заряда, если Q < 0, то вектор направлен к заряду.

Для наглядного изображения электрического поля используют силовые линии . Эти линии проводят так, чтобы направление вектора в каждой точке совпадало с направлением касательной к силовой линии (рис. 1.2.1). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рис. 1.2.2. Так как электростатическое поле, создаваемое любой системой зарядов, может быть представлено в виде суперпозиции кулоновских полей точечных зарядов, изображенные на рис. 1.2.2 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор от заряда Q к точке наблюдения. Тогда при Q > 0 вектор параллелен а при Q < 0 вектор антипараллелен Следовательно, можно записать:

где r - модуль радиус-вектора .

В качестве примера применения принципа суперпозиции полей на рис. 1.2.3. изображена картина силовых линий поля электрического диполя - системы из двух одинаковых по модулю зарядов разного знака q и -q , расположенных на некотором расстоянии l .

Важной характеристикой электрического диполя является так называемый дипольный момент , где - вектор, направленный от отрицательного заряда к положительному, модуль

Диполь может служить электрической моделью многих молекул.

Электрическим дипольным моментом обладает, например, нейтральная молекула воды (H 2 O), так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105° (рис. 1.2.4). Дипольный момент молекулы воды p = 6,2·10 -30 Кл · м.

Во многих задачах электростатики требуется определить электрическое поле по заданному распределению зарядов. Пусть, например, нужно найти электрическое поле длинной однородно заряженной нити (рис. 1.2.5) на расстоянии R от нее.

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δx нити, с зарядом τΔx , где τ - заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей Результирующее поле оказывается равным

Вектор везде направлен по радиусу Это следует из симметрии задачи. Уже этот простой пример показывает, что прямой путь определения поля по заданному распределению зарядов приводит к громоздким математическим выкладкам. В ряде случаев можно значительно упростить расчеты, если воспользоваться теоремой Гаусса, которая выражает фундаментальное свойство электрического поля.

Взаимодействия зарядов передаются с помощью особого материального посредника, называемого электрическим полем . Взаимодействие двух зарядов q 1 и q 2 можно объяснить так: в пространстве вокруг заряда q 1 существует особая форма материи – электрическое поле, которое и действует непосредственно на заряд q 2 .Действие электрического поля на помещенный в него заряд является основным его свойством .

Электрическое поле, созданное неподвижными зарядами, называется электростатическим .

Напряженность электростатического поля

Напряженность поля - векторная ха­рак­те­ристика электрического поля. Напря­жен­ность поля в некоторой точке определяется отно­шением силы, действующей со стороны поля на положительный заряд q 0 , помещенный в данную точку поля, к величине этого заряда :


, [

].



(1)

Напряженность электрического поля точечного заряда










. (2)

Принцип суперпозиции полей

Напряженность поля, создаваемая в какой-либо точке пространства системой зарядов, равна векторной сумме напряженностей, создаваемых в этой точке каждым из зарядов:


(3)


Напряженность поля непрерывно распределенного заряда:

. (4)

Характеристики распределенных зарядов


- линейная плотность зарядов;


- поверхностная плотность зарядов;


- объемная плотность зарядов;

Графическое изображение электрических полей. Силовые линии

Силовые линии это непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности электрического поля.

Свойства силовых линий

    силовые линии всегда начинаются на положительных зарядах и заканчиваются на отрицательных;

    силовые линии начинаются и заканчиваются либо на зарядах, либо уходят в бесконечность;

    густота силовых линий (число силовых линий, проходящих через единицу площади) пропор­ци­о­нальна напряженности электрического поля;

    силовые линии не пересекаются.

Примеры электрических полей

22. Работа сил электростатического поля по перемещению зарядов. Циркуляция вектора напряженности. Потенци­альный характер электростатического поля.


(1)


. (2)

С учетом того, что



. (3)

Работа по перемещению заряда не зависит от формы траектории и пройденного зарядом пути, а зависит только от начального и конечного положения заряда. Такое поле называется потенциальным , а кулоновская сила – консерва­тив­ной .

При движении заряда по замкнутой траектории (r 1 = r 2) работа равна нулю


. (4)

Интеграл

называется циркуляцией вектора напряженности .

В частном случае при перемещении заряда q 0 из точки 1 с произвольным радиусом r 1 = r в бесконечность (

)


. (5)

Электростатическое поле удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовая линия – это линия, в каждой точке которой касательная совпадает с направлением вектора напряженности (см. рис.). Силовым линиям придают направление стрелкой. Свойства силовых линий:

1 ) Силовые линии непрерывны. Они имеют начало и конец – начинаются на положительных и заканчиваются на отрицательных зарядах.

2 ) Силовые линии не могут пересекаться друг с другом, т.к. напряженность – это сила, а две силы в данной точке от одного заряда не могут быть.

3 ) Силовые линии проводят так, чтобы их количество через единичную перпендикулярную площадку было пропорционально величине напряженности.

4 ) Силовые линии «выходят» и «входят» всегда перпендикулярно поверхности тела.

5 ) Силовую линию не следует путать с траекторией движущегося заряда. Касательная к траектории совпадает с направлением скорости, а касательная к силовой линии – с силой и, следовательно, с ускорением.

Эквипотенциальной поверхностью называют поверхность, в каждой точке которой потенциал имеет одинаковое значение j = const.

Силовые линии всегда перпендикулярны эквипотенциальным поверхностям. Докажем это. Пусть вдоль эквипотенциальной поверхности перемещается точечный заряд q . Элементарная работа, совершаемая при этом равна dA=qE×cosa×dl = q×dj = 0, т.к. dj = 0. Поскольку q ,E и ×dl ¹ 0, следовательно

cosa = 0 и a = 90 о.

На рисунке изображено электростатическое поле двух одинаковых точечных зарядов. Линии со стрелками – это силовые линии, замкнутые кривые – эквипотенциальные поверхности. В центре осевой линии, соединяющей заряды напряженность равна 0. На очень большом расстоянии от зарядов эквипотенциальные поверхности становятся сферическими. .
На этом рисунке показано однородноеполе – это поле, в каждой точке которого вектор напряженности остается постоянным по величине и направлению Эквипотенциальные поверхности – это плоскости, перпендикулярные силовым линиям. Вектор напряженности всегда направлен в сторону убывания потенциала.

Тема 1. Вопрос 6.

Принцип суперпозиции.

На основе опытных данных был получен принципа суперпозиции (наложения) полей: «Если электрическое поле создается несколькими зарядами, то напряженность и потенциал результирующего поля складываются независимо, т.е. не влияя друг на друга». При дискретном распределении зарядов напряженность результирующего поля равна векторной сумме, а потенциал алгебраической (с учетом знака) сумме полей, создаваемых каждым зарядом в отдельности. При непрерывном распределении заряда в теле векторные суммы заменяется на интегралы, где dE и dj – напряженность и потенциал поля элементарного (точечного) заряда, выделенного в теле. Математически принцип суперпозиции можно записать так.

Тема 2. Вопрос 1.

Теорема Гаусса.

Сначала введем понятие «поток вектора » - это скалярная величина

(Н×м 2 /Кл = В×м) элементарный поток вектора напряженности Е , n – нормаль к площадке, dS – элементарная площадка – это такая малая площадка, в пределах которой Е = const; Е n – проекция вектора Е на направление нормали n
поток вектора напряженности через конечную площадку S
-²- -²- -²-через замкнутую поверхность S

1) Сфера, заряженная с поверхностной плотностью заряда s (Кл/м 2)

Рассмотрим области: 1) вне сферы () и внутри ее (). Выберем поверхности: 1) S 1 и 2) S 2 – обе поверхности – сферы, концентрические с заряженной сферой. Сначала найдем потоки вектора Е через выбранные поверхности, а затем воспользуемся теоремой.

(¨) Потоки вектора Е через S 1 () и S 2 . () E ^n , a = 0, cosa = 1.
(¨¨) по теореме Гаусса; F 2 = 0, т.к. S 2 не охватывает никаких зарядов. Приравнивая потоки из (¨) и (¨¨), найдем E(r) .
q = s×2pR 2 – полный заряд сферы Вне сферы поле такое же, как поле точечного заряда. На границе сферы происходит скачок напряженности.

Тема 2. Вопрос 2.

Теорема Гаусса.

2)Тонкая длинная нить, заряженная с линейной плотностью заряда t (Кл/м)

В этом случае «гауссова» поверхность – соосный с нитью цилиндр длиной l .

Сначала найдем поток, потом воспользуемся теоремой Гаусса.

Тема 2. Вопрос 3.

Теорема Гаусса.

3) Тонкостенный длинный цилиндр , заряженный:

1) с линейной плотностью заряда t или

2) с поверхностной плотностью заряда s.

Этот пример аналогичен предыдущему. Выбираем гауссову поверхность в виде соосного цилиндра, разбиваем поверхность на боковую и две торциальные. В первом случае при заданной линейной плотности t получим такую же формулу, как идля длинной нити. Во втором случае охватываемый заряд равен (s×2p×R×l) и формула для E несколько иная, хотя зависимость от r – та же.

Тема 2. Вопрос 4.

Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электромагнитного поля.

Что такое электрическое поле

После того как тело получило заряд, оно способно действовать на другие заряженные тела: притягивать тела с противоположным зарядом и отталкивать их, если они имеют такой же заряд.

Каким же образом происходит такое взаимодействие?

Зарядим металлический шарик, закреплённый на металлической подставке. Точно такой же по знаку заряд сообщим другому шарику из пенопласта, подвешенному на нити. Назовём его пробным. Перемещая его на разные расстояния, увидим, что нить с шариком отклоняется в любой точке пространства. Этот способ исследования называется методом пробного заряда .

Почему отклоняется пробный шарик?

Причина в том, что электрические заряды взаимодействуют друг с другом с помощью электрического поля, которое они создают в окружающем их пространстве. - это особый вид материи, с помощью которого это взаимодействие и происходит. Такое поле окружает каждый электрический заряд и действует на другие заряды с некоторой силой. Следовательно, электрическое поле – разновидность силового поля.

Характеризуется электрическое поле физической величиной, которую называют напряжённостью электрического поля . Это количественная характеристика , векторная величина. Она равна отношению силы, действующей на точечный заряд в данной точке поля, к величине этого заряда:

где - напряжённость электрического поля;

Сила, действующая на точечный заряд;

q – величина заряда.

Точечным называют заряженное тело, размеры которого настолько малы, что ими можно пренебречь по сравнению с расстоянием, на котором рассматривается воздействие этого заряда. Электрические поля, создаваемые такими зарядами, называют кулоновскими полями .

Силы, действующие на пробный заряд в разных точках электрического поля, отличаются по величине и направлению. Соответственно, различны и напряжённости в этих точках поля. Такое поле называют неоднородным .

Если модуль и направление напряжённости электрического поля одинаковы во всех его точках, то такое поле называется однородным .

Однородное поле создаётся в центре между двумя параллельными заряженными пластинами.

Электростатическое поле

Электрическое поле, созданное неподвижным и не меняющимся во времени зарядом, называется электростатическим полем .

Если электрическое поле образовано несколькими зарядами, то напряжённость в данной точке пространства равна сумме напряжённостей электрических полей, создаваемых в этой точке каждым зарядом в отдельности.

Графическое изображение электрического поля

Графически электрическое поле изображают с помощью силовых линий.

Силовая линия – это такая линия, касательная к которой в каждой её точке совпадает с направлением вектора напряжённости в этой точке.

Начинаются силовые линии на положительных зарядах или на бесконечности и заканчиваются на отрицательных, либо уходят в бесконечность. Они никогда не пересекаются и не касаются друг друга.

Силовые линии указывают направление действия силы, которая действует на положительно заряженную частицу со стороны электрического поля.

В общем эти линии имеют форму кривых . Но они могут быть и прямыми линиями в случае, если описывается поле одиночного точечного заряда.

Силовые линии положительного точечного заряда уходят в бесконечность.

Силовые линии отрицательного точечного заряда начинаются в бесконечности.

Совокупность двух точечных зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга, называется электрическим диполем . В целом электрический диполь нейтрален.

Вот так выглядят силовые линии электрического диполя.

А вот так располагаются силовые линии двух одинаковых по знаку электрических зарядов.

Электростатический потенциал

Другой величиной, характеризующей электростатическое поле, является электростатический потенциал (точечный потенциал) . Это скалярная величина, равная отношению потенциальной энергии взаимодействия электрического заряда с полем к величине этого заряда. Электростатический потенциал – это энергетическая характеристика электрического поля:

В вакууме электростатический потенциал точечного заряда определяют по формуле:

где q - величина заряда, r - расстояние от заряда-источника до точки, для которой рассчитывается потенциал;

Напряжённость электрического поля связана с его потенциалом следующим отношением:

Так как электрическое поле является потенциальным полем, то работа, совершаемая при перемещении заряда q из точки 1 в точку 2, равна:

A = W 1 – W 2 = qψ 1 – qψ 2 = q(ψ 1 – ψ 2)

Разность потенциалов ( ψ 1 – ψ 2) в электростатическом поле называется электрическим напряжением :

U = ( ψ 1 – ψ 2) = A/ q

Электрическое поле, созданное электрическими зарядами, называют потенциальным . Его силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Электрическое поле, возникшее за счёт электромагнитной индукции, называется вихревым . Силовые линии такого поля замкнуты. Существуют комбинации потенциальных и вихревых полей.

Электрическое поле является одной из составляющих электромагнитного поля. Оно возникает не только вокруг электрических зарядов, но и при изменении магнитного поля.

В свою очередь, магнитное поле появляется при изменении электрического поля или создаётся током заряженных частиц.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама