THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Качественно рассмотрены физические основы генерации магнитных полей в широком диапазоне значений, применяемых в лабораторных исследованиях, главным образом в физике твердого тела. Схематически представлены конструкции электромагнитов, различного рода соленоидов и взрывных устройств. Обсуждаются физические и технические ограничения на величину максимально достижимого поля различными методами.

ВВЕДЕНИЕ

Развитие науки немыслимо без проведения экспериментальных исследований. Получаемые при этом опытные факты ценны главным образом тем, что приводят к открытию новых, не предсказанных ранее явлений. На их основе появляется возможность создавать приборы, работающие на новых принципах. Последние оказываются либо более чувствительными и позволяют глубже и шире исследовать уже известную область науки, либо вооружают ученых для поиска новых явлений. Открытие явления, исследование его, изобретение на его основе прибора и дальнейшие исследования с помощью нового прибора - этапы построения здания науки об окружающем материальном мире.

В самом общем виде можно сказать, что в науке для познания Природы используются в качестве инструментов различного рода взаимодействия и поля. Воздействуя на вещество тем или иным полем, изучают отклик вещества на это воздействие. Анализируя его, делают заключение о природе явления. Наиболее эффективным средством воздействия является магнитное поле, так как магнетизм - широко распространенное свойство веществ.

Цель настоящей статьи - дать качественное описание наиболее распространенных методов получения магнитных полей. Большая часть этих методов является результатом развития научных знаний и достижений техники последних десятилетий. При этом они бурно развиваются и в настоящее время, так как потребность в них велика в силу ощущения открытия новых горизонтов для развития как научных знаний, так и техники.

Хотя магнетизм был известен человеку с древних времен, магнитное поле становится инструментом научных исследований только после открытия датским физиком Эрстедом в 1820 году связи между током и магнитным полем: электрический ток порождает магнитное поле. Это дало начало новому разделу физики - электромагнетизму. Металлический провод с током, свернутый в катушку (соленоид), вскоре после этого открытия и был первым генератором постоянного магнитного поля. Техника этого времени и долгое время после не позволяла получить сколько-нибудь сильные магнитные поля с помощью соленоидов, и основным устройством для этого был электромагнит - система из железного сердечника, помещенного в магнитное поле соленоида. Железо усиливает поле соленоида в сотни раз. Но поле электромагнита ограничено по величине практическими пределами. Поэтому с середины двадцатых годов нашего столетия более сильные магнитные поля стали получать с помощью специальных соленоидов, используя при этом весь накопленный арсенал достижений науки и техники.

Ниже дается обзор методов получения магнитных полей.

1. ЭЛЕКТРОМАГНИТЫ

Электромагниты до сих пор не утратили своего значения и широко применяются в науке и технике. Это связано со сравнительной простотой и дешевизной получения стационарных постоянных полей, пригодных для многих научных задач.

Рассмотрим простейшее устройство: многовитковую и многослойную катушку, намотанную на круглый сердечник, выполненный в виде замкнутого кольца. Положим, что размеры сечения ферромагнетика существенно меньше размеров кольца. По катушке течет ток I. Он создает поле Н = 0,4pnI, где n - плотность числа витков обмотки на 1 см. Это поле наводит в ферромагнетике дополнительное поле Нф. Суммарное поле (магнитная индукция) В = Н + Нф.

Для качественного описания работы электромагнита можно допустить, что до некоторого значения H = Ннас величина Нф существенно и линейно зависит от Н, а в больших полях практически не зависит от него (ферромагнетик насыщается). Тогда при Н < Hнас В = mН, где m - магнитная проницаемость. Видно, что в полях соленоида, больших Ннас, прирост магнитного поля В возможен лишь за счет поля соленоида.

Практически для технически чистого железа (мягкие стали) величина m ї 100, а Внаc ї mHнас около 2 " 104 Э. Ряд сплавов обладает несколько большим значением Внас. Так, пермендюр (сплав 50% Fe + + 50% Co) имеет Внас = 2,4 " 104 Э. Еще большее значение Внас ї 3 " 104 Э имеет поликристаллический диспрозий, но он редко применяется, так как ферромагнитные свойства проявляются в нем ниже комнатных температур. Поэтому основным материалом для изготовления электромагнитов является железо.

Для того чтобы использовать поле В, необходимо ферромагнетик разомкнуть. Тогда поле Н0 в образовавшемся пространстве щели, если расстояние d между торцами d ! D (где D - диаметр сечения щели), будет совпадать с В, H0 ї B. При увеличении d величина Н0 будет уменьшаться из-за неизбежного рассеяния магнитного потока в пространстве. В общем случае Н0 < B < Bнас.

Практически электромагниты делают из двух железных цилиндров (полюса) радиуса r, на которые насажены короткие катушки; максимальное поле катушек обычно не превышает 500 - 1000 Э. Полюсы плотно вставляются в железное ярмо, замыкающее магнитный поток. Между оставшимися свободными торцами, расстояние между которыми d, образуется межполюсное рабочее пространство с размерами d, 2r (рис. 1а). Максимальное поле в нем достигается в центре и дается выражением

H0 = Bср(1 - cos q),

где Вср - некоторое усредненное по поверхности торцов поле, Вср < В < Bнас.

На первый взгляд кажется, что получить поле Н0 , большее Внас, варьируя d и r, нельзя. Это действительно так для рассмотренной формы полюсов и их окончаний в межполюсном пространстве (полюсные наконечники). В общем случае за счет другой формы полюсов и особенно формы полюсных наконечников поле Н0 может существенно превосходить поле Внас. Практически это может происходить лишь за счет наращивания массы железа.

Рассмотрим частный случай полюсов и полюсных наконечников, изображенных на рис. 1б. Точное выражение для этого случая:

Здесь третий член представляет дополнительный вклад в Н0 от того объема полюсов, который образуют конусные поверхности полюсных наконечников. Именно конусность позволяет послать дополнительные силовые линии в центр межполюсного пространства. Третий член при определенном угле q достигает максимума. Его значение примерно 55?. Поэтому часто полюсные наконечники выполняются в виде усеченных конусов с углом раствора порядка 110? - 120?. Размер r1 определяет объем межполюсного пространства, в то время как r2 - объем всего магнита, так как площадь сечения ярма не может быть меньше, чем у полюсов. Увеличивая r2 , то есть наращивая объем железа, можно увеличить Н0 и превысить значение Внас. Но зависимость Н0 от r2 довольно слабая, что приводит к практическим ограничениям (приемлемые размеры и вес) достижения больших полей с помощью электромагнитов.

Рекордные величины Н0 были получены на двух электромагнитах. Один из них был сконструирован в начале 30-х годов нашего столетия в Парижской Академии наук. Его общий вес (главным образом железа) около 150 тонн, габариты 6 i 3 i 2 м3, потребляемая мощность 100 кВт. В центре межполюсного пространства (r1 = 1 см, d = 1 см) он давал поле Н0 = 6,5 " 104 Э. Другой магнит был сконструирован в Университете г. Упсала (Швеция) в 1934 году. Его общий вес - 37 тонн. За счет лучшей формы полюсов, а также ярма - толстостенного цилиндра, внутри которого размещались полюсы и катушки, при меньшем весе удалось получить большее поле Н0 = 7,5 " 104 Э в таком же объеме, что и у первого магнита. Рядовые же лабораторные электромагниты дают возможность получать максимальные поля до 3 " 104 Э, потребляя при этом скромную мощность в 1 - 5 кВт.

Любопытно отметить, что самым грандиозным из электромагнитов (а может быть, вообще изделий из железа) является магнит синхрофазотрона Объединенного института ядерных исследований в Дубне. Вес его ярма - 30 тыс. тонн. В тороидальном объеме межполюсного пространства (диаметр кольца 150 м и диаметр сечения около 2 м) он создает поле порядка 2 " 104 Э.

2. СОЛЕНОИДЫ

Из предыдущего видно, что получить с помощью электромагнита поле, большее, скажем, 105 Э, практически невозможно. Дальнейший путь увеличения поля - использование соленоидов без ферромагнетика. В соленоидах поле генерируется только за счет протекающего тока, и максимально достижимые магнитные поля зависят от величины мощности, которую можно "загнать" в соленоид.

Соленоиды бывают различных типов: многовитковые многослойные катушки, спирали плоские и геликоидальные, набранные из дисков и цельноточеные из металлических прутков, одновитковые и др. По своему значению они делятся на два больших класса: соленоиды для получения стационарных магнитных полей, то есть таких полей, которые могут по желанию экспериментатора долго держаться при определенных фиксированных значениях, и соленоиды для получения импульсных магнитных полей, существование которых возможно лишь в течение короткого времени (в общем случае не более 1 секунды). С помощью соленоидов первого типа генерируются поля до 2,5 " 105 Э. Импульсные соленоиды позволяют получить поля до 5 " 106 Э.

Принято поля в диапазоне 105 - 106 Э называть сильными, а свыше 106 Э - сверхсильными. Если во время получения поля соленоиды не деформируются и не сильно нагреваются, то поле в них пропорционально протекающему току: Н = kI, где k - константа соленоида, которая поддается точному расчету.

Рассмотрим сначала соленоиды стационарного магнитного поля. Они делятся, в свою очередь, на резистивные и сверхпроводящие.

Резистивные соленоиды изготавливаются из материалов, имеющих электрическое сопротивление. Поэтому вся подводимая к ним непрерывно энергия диссипируется в тепло. Во избежание теплового разрушения соленоида это тепло необходимо отводить. Для отвода тепла используется водяное или криогенное охлаждение, что требует дополнительной энергии, подчас сравнимой с той, что необходима для питания самого соленоида.

Сверхпроводящие соленоиды изготавливаются из сверхпроводящих сплавов, электрическое сопротивление которых остается равным нулю при температурах и полях проведения эксперимента. При работе сверхпроводящего соленоида энергия выделяется лишь в подводящих проводах и источнике тока. Последнее вообще может быть исключено, если соленоид работает в короткозамкнутом режиме, когда поле без потребления энергии может существовать сколь угодно долго при сохранении условий существования сверхпроводимости.

Установки для получения сильных магнитных полей состоят из трех основных частей: источника постоянного тока, соленоида и системы охлаждения. При конструировании соленоида исходят из величины его внутреннего канала d, приемлемого для проведения опытов, и имеющейся мощности источника тока W. Обычно значение d порядка 3 - 5 см. Встает вопрос, как при этих заданных параметрах получить максимальное поле. Эта задача решается точно. Рассмотрим два практически важных случая. Пусть соленоид намотан проводом, тонким по сравнению с размерами круглого каркаса, который имеет прямоугольное осевое сечение В этом случае ток будет равномерно распределен по всему сечению обмотки. Поле в центре рабочего канала соленоида дается выражением

где l - коэффициент заполнения, равный отношению объема металлического проводника обмотки к объему, занимаемому всей обмоткой (l < 1), r - удельное сопротивление проводника в Ом " см, g - коэффициент, зависящий лишь от геометрии осевого сечения объема обмотки, то есть от относительных размеров a = D / d и b = l / d, где D - внешний диаметр, а l - длина соленоида. Максимальное значение g = 0,18 достигается при a = 3, b = 2. При любых других значениях a и b и прочих равных условиях магнитное поле будет меньше.

Другая конструкция соленоида дает возможность более эффективно использовать имеющеюся мощность, то есть получить большее поле при той же мощности и величине d. Он изготавливается из тонких, обычно медных дисков, разрезанных один раз по радиусу. Диски электрически соединяются внахлест частью своей площади друг с другом, образуя геликоидальную спираль. Между дисками располагается изоляция. Кроме того, диски по многим радиусам имеют круглые или щелевые отверстия, которые при сборке соленоида образуют вдоль его оси сквозные каналы для прокачки охлаждающей жидкости. Начало применению таких соленоидов было положено Френсисом Биттером в конце 30-х годов нашего столетия в США, и поэтому они называются биттеровскими соленоидами. Легко видеть, что ток в биттеровском соленоиде распределен по диску неравномерно: плотность тока j падает от максимального значения j0 на внутренней части диска с диаметром d к периферии по закону

Решение задачи на максимум поля приводит также к формуле (3), а фактор g достигает максимального значения g = 0,21 при a = 6 и b = 2, то есть соленоид еще больше сплюснут.

Есть и другие конструкции, в которых g достигает больших значений. Поэтому была решена и общая задача о нахождении такой геометрии соленоида и распределения тока в нем, при которых достигалось бы предельно максимальное значение g. Ответ: g = 0,27. Но эта величина скорее служит ориентиром для оценок, так как практическая реализация такого соленоида невозможна, поскольку найденное значение достигается при a, b ? и при довольно сложном распределении плотности тока j по обмотке.

Обратимся к выражению (3). Можно подсчитать, что для соленоида из меди поле порядка 105 Э достигается при мощности порядка 1 МВт (r ~ 2 i i 10- 6 Ом " см, l @ 1, d @ 3 см). В 1939 году такая величина поля впервые была достигнута в биттеровском соленоиде. Успех пришел после того, как через маленький объем каналов соленоида удалось прокачивать несколько кубометров охлаждающей воды в минуту.

Для водоохлаждаемых соленоидов биттеровского типа дальнейшее увеличение максимального поля Н0 возможно лишь за счет увеличения мощности источника тока. Но при этом должен возрастать перегрев соленоида относительно охлаждающей жидкости. Это ограничивает максимально достижимую величину Н0 для соленоидов стационарного поля: тепловыделение приводит к пленочному кипению охлаждающей жидкости (образование паровой прослойки между металлом и жидкостью), резкому снижению теплосъема и катастрофическому повышению температуры соленоида. Для воды это происходит при потоке мощности около 2000 Вт/см2. Зная оптимальную площадь охлаждения соленоида, можно подсчитать максимально снимаемую мощность. Подсчеты дают (при d = 3 см) примерно 10 МВт и поле около 2 " 105 Э.

Если же уменьшить время работы соленоида так, что соленоид не успеет расплавиться, то максимальное поле будет ограничиваться другим фактором - прочностью соленоида. Электромагнитное взаимодействие токов приводит к двум силам. Одна из них - осевая - сжимает соленоид, другая - тангенциальная - растягивает по радиусу. Они могут привести к пластическому течению материала соленоида и к обрыву обмотки. Для чистой меди предел по механической прочности достигается при Н ї 2 " 105 Э. Для материалов типа бронзы и стали он в несколько раз больше Н (до 7 " 105 Э). Это используется для генерации импульсных магнитных полей (см. далее).

Создание установки с резистивным соленоидом для генерации стационарных полей - большая научно-техническая задача. Поэтому во всем мире имеется лишь около десяти лабораторий с такими установками (США, Франция, Польша, Япония, Россия). Используются соленоиды разных конструкций, работа которых происходит вблизи теплового предела. Эксплуатация соленоидов требует высококвалифицированного персонала и обходится недешево. Львиная доля расходов идет на оплату электроэнергии. Существование и работа таких соленоидов окупается тем, что здесь исследователи из разных областей физики, приглашаемые из других стран, получают важные научные результаты.

Обратимся теперь к сверхпроводящим соленоидам. Как это часто бывает, когда в какой-либо области техники после долгого и трудного пути решается сложная и важная задача, оказывается, что этого же результата можно достичь более простым, экономичным и эффективным методом. Пример тому - получение сильных стационарных полей с помощью сверхпроводящих соленоидов. Из многих замечательных свойств явления сверхпроводимости используется основное: отсутствие ниже определенной характерной температуры Тc (критическая температура) электрического сопротивления у ряда металлов и сплавов. Явление сверхпроводимости было открыто в 1911 году голландским физиком Камерлинг-Оннесом в образцах ртути при Т = 4 К. При температуре кипения жидкого гелия сверхпроводимостью обладают также свинец Pb (Tc = 7,2 K) и ниобий Nb (Tc = 9 K). Это наивысшие значения Tc для элементов.

Сверхпроводимость позволяет изготовлять соленоиды, в которых не происходит диссипация энергии при протекании тока. Но получаемое при этом поле ограничивается тем обстоятельством, что это же поле при достижении определенного значения Нc (критическое поле) разрушает сверхпроводимость и сопротивление восстанавливается. Критическое поле увеличивается при уменьшении температуры от нуля при Tc до максимального значения при Т 0 К. Для чистых металлов это значение невелико: у Pb ~ 800 Э, у Nb ~ 2000 Э. В 50-х годах были открыты сплавы металлов, у которых Tc были в диапазоне 10 - 20 К. Но главное - они обладали колоссальными критическими полями. Несколько практически важных сплавов приведены в таблице 1. Технология получения этих сплавов и изготовление из них материалов для обмоток соленоидов сложна и трудоемка. Поэтому соленоид из них не является дешевым изделием. Но эксплуатация таких устройств проста и дешева, так как для этого требуются лишь жидкий гелий и низковольтный источник тока малой мощности (в большинстве случаев не более 1 кВт). Конструкции соленоидов - это катушки, намотанные из композиционных материалов (из сверхпроводника и меди) в виде одножильных и многожильных проводов, шин и лент.

В настоящее время прогресс в этой области достиг такого уровня, что поля до 105 Э доступны практически для любой лаборатории, а иметь поле до (1,5 - 1,8) " 105 Э - это лишь вопрос финансовых возможностей.

В заключение этого раздела расскажем о замечательной возможности снизить энергозатраты на генерацию еще больших полей (до 3 " 105 Э), которая реализована в ряде стран (Россия, Франция, США). Это использование комбинации из сверхпроводящего и водоохлаждаемого соленоидов (гибридный соленоид), в которой суммируются максимально достижимые поля как того, так и другого. Естественно, что водоохлаждаемый соленоид должен размещаться внутри сверхпроводящего. Конечно, создание установки с гибридным соленоидом - сложная и объемная научно-техническая проблема, и для ее решения необходим труд больших коллективов различных научных учреждений. Гибридная система успешно работает в Институте атомной энергии Российской Академии наук. Ее сверхпроводящий соленоид весит около 1500 кг и в объеме диаметром 40 см дает поле до 7 " 104 Э. Обмотка изготовлена из сплавов NbZn и NbTi. Водоохлаждаемый соленоид намотан медной шиной. При мощности 5,6 МВт (ток 25 кА) в объеме диаметром 5 см получается поле до 1,8 " 105 Э. Рекордное суммарное поле системы - 2,5 " 105 Э. Это не предел для гибридных соленоидов, так как вполне реально получение полей до 105 Э в сверхпроводящем соленоиде и 2,5 " 105 Э - в водоохлаждаемом. Можно надеяться, что это вопрос ближайшего времени.

3. ИМПУЛЬСНЫЕ МАГНИТНЫЕ ПОЛЯ

Импульсные магнитные поля условно делятся на два класса: класс сильных и класс сверхсильных магнитных полей. В первом магнитное поле получается без разрушения и существенной деформации соленоида; его значение лежит в области до (5 - 7) " 105 Э. Здесь используются главным образом геликоидальные соленоиды, выточенные из прочных материалов (бронзы, стали). Во втором соленоид либо сильно деформируется, либо полностью разрушается; диапазон получаемых с их помощью полей простирается в область свыше 106 Э. Соленоиды для сверхсильных полей - исключительно одновитковые. Они просты и дешевы в изготовлении.

Принципиальная возможность использовать импульсные магнитные поля для научных исследований связана с тем, что характерные времена многих физических явлений и процессов существенно меньше времени существования импульсного поля, так что для них последнее можно рассматривать как квазистационарное.

Идея метода получения импульсного магнитного поля была высказана П.Л. Капицей в 1923 году и успешно реализована им в последующей научной деятельности. Идея эта очень проста: для генерации сильного магнитного поля необходима очень большая мощность (H Z I Z W 1/2). Ее можно получить, если сравнительно небольшую энергию Е реализовать за короткий промежуток времени t в соленоиде. Тогда W ї E / t. Существенно, чтобы диссипируемая энергия Е не приводила к тепловому разрушению соленоида. Установки для импульсных магнитных полей состоят из четырех основных частей: источника энергии, накопителя энергии, ключа и собственно соленоида. В 20-е годы наиболее эффективным накопителем энергии оказался специально разработанный Капицей механический накопитель кинетической энергии. Это был генератор переменного тока, сконструированный для работы в короткозамкнутом режиме. Источником энергии был мотор постоянного тока на 60 кВт. Он раскручивал массивный ротор генератора (2,5 тонны) до 3500 об/мин. В момент, когда напряжение проходило через нуль, механический ключ, синхронно работающий с генератором, замыкал цепь генератора на соленоид на время первого полупериода тока. Часть накопленной в роторе кинетической энергии переходила в электрическую. В цепи соленоида развивалась мощность до 50 МВт при токе до 7,2 " 104 А. Соленоиды навивались в несколько слоев шиной квадратного сечения. Шина изготавливалась из кадмиевой бронзы, чье электрическое сопротивление было близко к меди, а механическая прочность - к стали. Капице удалось получить поля до 5 " 105 Э длительностью ї 0,01 секунды. Он выполнил на своей установке исследования по физике твердого тела, которые стали классическими.

В последующем в послевоенные годы в этом методе претерпели изменения лишь основные узлы установки: источник энергии - высоковольтные выпрямители постоянного тока, накопители - батареи высоковольтных конденсаторов большой емкости, ключи - вакуумные разрядники. Конденсаторные батареи при емкости в несколько тысяч микрофарад и напряжении до 30 кВ способны накопить энергию в несколько мегаджоулей и получать в импульсе мощность в десятки мегаватт.

По существу, после того как заряженная батарея конденсаторов замыкается на соленоид, электрическая цепь является колебательным контуром, в котором возникают свободные затухающие колебания тока:

I = I0e- kt sin wt,

где k = R / L, частота

Соответственно L, C, R - индуктивность, емкость и сопротивление всей цепи.

При слабом затухании I0 можно оценить из баланса энергии:

Из (4) видны пути увеличения максимально достижимого поля, когда возможности конденсаторной батареи исчерпаны. Необходимо уменьшать сопротивление и индуктивность подводящей ток цепи. Для этой же цели иногда охлаждают соленоид жидким азотом. Сопротивление соленоида при этом падает в 10 раз.

Импульсные сильные магнитные поля успешно используются во многих лабораториях. Наиболее известна сейчас магнитная лаборатория в Токийском университете, где были недавно получены поля напряженностью до 106 Э при длительности импульса t ї 0,01 секунды.

Метод, аналогичный описанному, применяется и для получения сверхсильных магнитных полей. Увеличение мощности происходит за счет уменьшения длительности импульса (интервал t перемещается в область микросекунд). Но это одноразовые опыты, так как соленоиды разрушаются. Жертвуя соленоидом и всем, что находится внутри него, удается получать поля 5 " 106 Э. Это рекорд. Он достигнут в Институте атомной энергии РАН в Москве.

4. СЖАТИЕ МАГНИТНОГО ПОТОКА

Дальнейший прогресс получения еще больших значений поля был связан с оригинальным и красивым методом - увеличением плотности магнитного потока путем сжатия проводящего кольца или цилиндра. Идея и реализация этого метода принадлежат А.Д. Сахарову (1951 г., см. ), который работал в то время в закрытой области. В открытой печати этот же метод теоретически рассмотрел Я.П. Терлецкий в 1957 году.

Суть метода в следующем. Возьмем цилиндрическое тонкостенное кольцо из проводящего материала радиусом rH , которое пронизывает начальное магнитное поле Нн. Тогда полный поток магнитного поля через кольцо ФН = SнHн, где Sн - начальная площадь, заключенная внутри кольца, . Подвергнем кольцо быстрой деформации по радиусу (сжатию), такой, что оно изменяется подобно самому себе. В кольце возникнут токи, стремящиеся сохранить поток ФH . На конечной стадии сжатия радиус кольца уменьшится до величины rк. Если время затухания тока существенно превышает время сжатия, то потерями можно пренебречь, то есть считать, что поток через кольцо сохраняется; откуда следует, что конечная плотность магнитного потока

Больших успехов в использовании метода сжатия магнитного потока достигли российские и итальянские физики. Первоначально деформация кольца (обычно медного) проводилась с помощью направленного взрыва взрывчатого вещества (ВВ). Один из вариантов опытов показан на рисунке 2а. Тонкостенное медное кольцо, называемое "лайнер", окружает кольцевой заряд ВВ. Внутрь кольца плотно вставлен соленоид с небольшим числом витков. Это импульсный соленоид, задающий начальный поток ФH . Его время работы рассчитано так, что оно больше времени затухания тока в кольце, для того чтобы начальное поле смогло проникнуть внутрь кольца. После того как это достигнуто, производится подрыв ВВ по всей внешней периферии. Развивающееся давление приводит к пластической деформации лайнера, и он начинает сжиматься. Сжатие прекращается в тот момент, когда сравниваются электродинамические силы в лайнере с силами взрыва. При удачном проведении опыта, используя массу ВВ в 20 кг, медный лайнер диаметром около 10 см и начальное поле 105 Э, удается получить поле до 2 " 107 Э. Имеются и другие варианты сжатия магнитного потока с помощью взрыва (рис. 2б).

Более деликатный, изящный и дешевый метод без применения ВВ предложен японскими учеными из Токийского университета. В нем лайнер располагается внутри прочного одновиткового соленоида. Затравочное поле Нн получается от двух катушек, расположенных с двух сторон по торцам лайнера. Разряд мощной батареи конденсаторов на одновитковый соленоид наводит в лайнере токи, текущие в направлении, противоположном токам этого соленоида. Взаимодействие токов деформирует и сжимает лайнер. В этом методе разрушается только лайнер. Метод не требует проведения экспериментов на специальных полигонах. Достаточно стального бокса объемом в несколько кубических метров. Этим методом достигнуты поля до 2 " 106 Э. На рисунке 3 представлены последовательные стадии сжатия лайнера, полученные скоростной фотографией.

Интересно здесь упомянуть, что природа тоже, по-видимому, использует метод сжатия магнитного потока для сверхсильных магнитных полей. Полагают, что при коллапсе массивной звезды и превращении ее в нейтронную ее радиус уменьшается с 106 до 10 км. В силу большой проводимости, а возможно и сверхпроводимости на определенном этапе сжатия, захватывается первоначальный магнитный поток. При начальном поле в 102 Э поле может возрасти до 1012 Э. Природа звезд-пульсаров связывается с существованием таких полей.

Наконец в заключение этого раздела укажем, что и сверхслабые магнитные поля получаются аналогичным способом. Только в этом случае производится не сжатие, а расширение оболочек, выполненных из сверхпроводника. Расширение происходит медленно с помощью механических устройств. Удается получать поля до 10- 8 Э.

ЗАКЛЮЧЕНИЕ

Таблица 2 дает представление о величинах магнитного поля и временах их существования, получаемых различными методами.

Конечно, получение сильных магнитных полей не является самоцелью ученых и инженеров, а дает в руки исследователей мощный инструмент познания природы. И этот инструмент эффективно используется. Но мы лишены возможности описать здесь результаты научных исследований. Надеемся, что заинтересованный читатель найдет хорошие обзоры на эту тему в доступной ему литературе, список которой приводится ниже. Прокомментируем его.

В наиболее полно изложены методы получения магнитных полей с помощью электромагнитов, соленоидов и сверхпроводников. В достаточно полно рассмотрен метод сжатия магнитного потока. Сборник позволяет узнать как о принципах генерации магнитного поля, так и о действующих в этой области лабораториях. В нем содержится обзор некоторых результатов, полученных в области физики твердого тела и биологии. В рассмотрены методы и техника генерации сильных и сверхсильных магнитных полей, обсуждаются перспективы прогресса в этой области. Наконец - это специальный выпуск журнала "Природа", посвященный 100-летию П.Л. Капицы. Он интересен в целом, и в нем есть статья, посвященная самым последним достижениям в области сильных магнитных полей и полученных с их помощью научных результатов.

Избранная статья

Напряжённость магнитного поля

Общие сведения


Напряжённость магнитного поля и магнитная индукция. Казалось бы, зачем было физикам усложнять и без того сложные физические понятия при описании явлений магнетизма? Два вектора, одинаково направленные, отличающиеся разве что коэффициентом пропорциональности - ну какой в этом смысл с точки зрения простого человека, не слишком обременённого знаниями из области современной физики?

Тем не менее, именно в этом различии скрываются нюансы, позволившие учёным открыть и удивительные свойства различных веществ, и законы их взаимодействия с магнитным полем, и даже изменить наши представления об окружающем мире.

В действительности за этой разницей скрывается различный методологический подход. Упрощенно говоря, в случае использования понятия напряжённости магнитного поля мы пренебрегаем влиянием магнитного поля на вещество в конкретном случае; в случае применения понятия магнитной индукции, мы учитываем этот фактор.

С технической точки зрения, напряжённость магнитного поля сколь угодно сложной конфигурации достаточно просто рассчитать, а результирующую магнитную индукцию - измерить.

За этой кажущейся простотой скрывается титанический труд целой плеяды учёных, разделённых во времени и пространстве. Их идеи и концепции определили и определяют развитие науки и техники в прошлом, настоящем и будущем.

И неважно, как скоро мы овладеем термоядерной энергией с помощью нового поколения термоядерных реакторов, основанных на удержании «горячей» плазмы магнитным полем. Когда отправим в космос новые поколения исследовательских роботов на ракетах, основанных на применении иных принципов, чем сжигание химического топлива. Или, в частности, решим задачу коррекции орбит микроспутников двигателями Холла. Или насколько полно сможем утилизировать энергию Солнца, как быстро и дёшево мы сможем передвигаться по нашей планете - имена первопроходцев науки навеки останутся в нашей памяти.

Уже современному поколению учёных и инженеров двадцать первого века, вооружённому накопленными знаниями своих предшественников, покорится задача магнитной левитации, пока апробированная в лабораториях и пилотных проектах; и проблема извлечения энергии из окружающей среды с помощью технической реализации «демона Максвелла» с использованием невиданных до сих пор материалов и взаимодействий нового типа. Первые прототипы таких устройств уже появились на Kiсkstarter.

При этом будет решена главная проблема человечества - превращения в тепло накопленных за сотни миллионов лет запасов углей и углеводородов, нещадно изменяющих продуктами сгорания климат нашей планеты. И грядущая термоядерная революция, гарантирующая, вслед за её бездумным освоением, тепловую смерть всякой органической жизни на Земле, не станет смертным приговором цивилизации. Ведь энергия любого вида, которую мы расходуем, в конце концов превращается в тепло и нагревает нашу планету.

Дело за малым - временем; доживём - увидим!

Историческая справка

Несмотря на то, что сами магниты и явление намагничивания были известны издавна, научное изучение магнетизма началось с работ французского средневекового учёного Пьера Пелерена де Марикура в далёком 1269 году. Де Марикур подписывал свои труды именем Петруса Перегрина (лат. Petrus Peregrinus).


Исследуя поведение железной иглы возле сферического магнита, учёный обнаружил, что игла по-особенному ведёт себя возле двух точек, названных им полюсами. Так и подмывает дать аналогию с магнитными полюсами Земли, но в то время за такой образ мыслей легко можно было отправиться на костёр! Кроме того, исследователь обнаружил, что любой магнит всегда имеет (в современном представлении) северный и южный полюса. И как не распиливай магнит в продольном или в поперечном сечении, всё равно каждый из полученных магнитов всегда будет иметь два полюса, как бы тонок он ни был.

«Крамольная» идея о том, что Земля сама по себе является магнитом, была опубликована английским врачом и натуралистом Уильямом Гилбертом в работе «De Magnete», увидевшей свет почти три века спустя в 1600 году.


В 1750 году английский учёный Джон Митчелл установил, что магниты притягиваются и отталкиваются (взаимодействуют) в соответствии с законом «обратных квадратов». В 1785 году французский учёный Шарль Огюстен де Кулон экспериментально проверил предположения Митчелла и установил, что северный и южный магнитные полюса не могут быть разъединены. Тем не менее, по аналогии с открытым им ранее законом взаимодействия электрических зарядов, Кулон всё же предположил существование и магнитных зарядов - гипотетических магнитных монополей .

Основываясь на известных ему на то время фактов о магнетизме и на преобладающем в то время в науке методологическом подходе к построению теорий взаимодействия как о некоторых жидкостях, в 1824 году соотечественник Кулона Симеон Дени Пуассон создал первую успешную модель магнетизма. В его теоретической модели магнитное поле описывалось диполями магнитных зарядов.

Но буквально сразу же три открытия подряд поставили под сомнение модель Пуассона. Рассмотрим их ниже.

Датский физик Ханс Кристиан Эрстед в 1819 году заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки, обнаружив, таким образом, взаимосвязь между электричеством и магнетизмом.

В 1820 году французский учёный Андре-Мари Ампер установил, что проводники с токами, текущими в одном направлении притягиваются, а в противоположном - отталкиваются. В том же 1820 году французские физики Жан-Батист Био и Феликс Савар открыли закон названный впоследствии их именами. Этот закон позволял рассчитать напряжённость магнитного поля вокруг любого проводника с током вне зависимости от его геометрической конфигурации.

Обобщая полученные теоретические и экспериментальные данные, Ампер высказал идею об эквивалентности электрических токов и проявлений магнетизма. Он разработал свою модель магнетизма, в которой заменил магнитные диполи циркуляцией электрических токов в крошечных замкнутых петлях. Модель проявления магнетизма Ампера имела преимущество перед моделью Пуассона, поскольку объясняла невозможность разделения полюсов магнитов.

Ампер также предложил для описания таких явлений термин «электродинамика», который расширил применение науки об электричестве к динамическим электрическим объектам, дополняя тем самым электростатику. Пожалуй, наибольшее влияние на понимание сути проявлений магнетизма оказала концепция представления взаимодействия магнитов через силовое поле, описываемое силовыми линиями, предложенная английским учёным Майклом Фарадеем. Открытое в 1831 году Фарадеем явление электромагнитной индукции позднее было объяснено немецким математиком Францем Эрнстом Нейманом. Последний доказал, что возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него, является просто следствием закона Ампера. Нейман ввел в обиход науки понятие векторного магнитного потенциала, который во многом эквивалентен напряжённости силовых линий магнитного поля Фарадея.

Окончательную точку в споре двух моделей магнетизма поставил в 1850 году выдающийся английский физик Уильям Томпсон (лорд Кельвин). Введя понятие намагниченности среды M , в которой имеется магнитное поле, он не только установил зависимость между напряжённостью магнитного поля H и вектором магнитной индукции B , но и определил области применимости этих понятий.

Напряжённость магнитного поля. Определение

Напряжённость магнитного поля - это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности М . В Международной системе единиц (СИ) значение напряжённости магнитного поля определяется формулой:

H = (1/μ 0) ∙ B - M

где μ0 - магнитная постоянная, иногда её называют магнитной проницаемостью вакуума

В системе единиц СГС напряженность магнитного поля определяется по другой формуле:

Н = B - 4∙π∙М

В Международной системе единиц СИ напряжённость магнитного поля измеряется в амперах на метр (А/м), в системе СГС - в эрстедах (Э).

В электротехнике встречается также внесистемная единица измерения напряжённости - ампер-виток на метр. С другими величинами измерения напряжённости магнитного поля, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.

Измерительные приборы для измерения величины напряжённости магнитного поля, как и приборы для измерения магнитной индукции, называют тесламетрами или магнитометрами.

Напряжённость магнитного поля. Физика явлений

Исследовательский токамак (то роидальная ка мера с ма гнитными катушками), работавший в научно-исследовательском институте государственной энергетической компании Hydro-Québec в пригороде Монреаля c 1987 по 1997 год, когда проект был закрыт для экономии бюджетных средств. Установка находится в экспозиции Канадского музея науки и техники

В вакууме (в классическом понимании этого термина) или в отсутствие среды, способной к магнитной поляризации или в случаях, когда магнитной поляризацией среды можно пренебречь, напряжённость магнитного поля Н совпадает (с точностью до коэффициента) с вектором магнитной индукции В . Для системы СГС этот коэффициент равен 1, для системы единиц СИ - μ0.

Напряжённость магнитного поля обусловлена свободными (внешними) токами, которые легко измерить или рассчитать. То есть напряжённость имеет смысл для внешнего магнитного поля, создаваемого катушкой с током, в которую вставлен материал, способный намагничиваться. Если нас не интересует поведение материала под действием магнитного поля, то достаточно оперировать только напряжённостью магнитного поля. Например, напряженности будет достаточно для технического расчёта взаимодействия магнитных полей двух или более катушек с током. Результирующая напряжённость будет векторной суммой полей, создаваемых отдельными катушками с током.

Поскольку большинство электромагнитных устройств работает в воздушной среде, важно знать её магнитную проницаемость. Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π 10⁻⁷ Гн/м.

Иное дело, когда нас интересует именно поведение среды, способной к намагничиванию, например, при использовании ядерных магниторезонансных явлений. При ЯМР ядра атомов, иначе называемые нуклонами и обладающие полуцелым спином (магнитным моментом), при воздействии магнитного поля поглощают или излучают электромагнитную энергию на определённых частотах. В этих случаях необходимо учитывать именно магнитную индукцию.

Применение напряжённости магнитного поля в технике

В большинстве случаев практического применения магнитного поля, например, для его создания или для измерения его величины, напряжённость магнитного поля играет ключевую роль. Существует множество примеров использования магнитного поля, в первую очередь в измерительной технике и в различных установках для проведения экспериментов.

Магнитное поле определённой силы и конфигурации удерживает плазменные шнуры или потоки заряженных частиц в исследовательских термоядерных реакторах и в ускорителях элементарных частиц, предотвращая тем самым охлаждение плазмы при контакте с ограждающими стенками. Оно же отклоняет потоки ионов или электронов в спектрометрах и кинескопах.

Измерение напряжённости магнитного поля Земли в различных точках очень важно для оценки состояния её магнитосферы. Существует даже целая сеть наземных станций и группировок научных спутников для мониторинга напряжённости магнитного поля Земли. Их работа позволяет предсказывать магнитные бури, возникающие на Солнце, сводя к минимуму, насколько это возможно, их последствия.


Измерение напряженности поля даёт возможность проводить различные изыскания, сортировать материалы и мусор, а также обеспечивать нашу безопасность, обнаруживая оружие террористов или заложённые мины.

Магнитометры

Магнитометрами называется целый класс измерительных приборов, предназначенных для измерения намагниченности материалов или для определения силы и направления магнитного поля.

Первый магнитометр был изобретён великим немецким математиком и физиком Карлом Фридрихом Гауссом в 1833 году. Этот прибор представлял собой оптический прибор с крутящимся намагниченным стержнем, подвешенным на золотой нити, и приклеенным к нему перпендикулярно оси магнита зеркалом. Измерялось различие колебаний намагниченного и размагниченного стержня.

Ныне используются более чувствительные магнитометры на иных принципах, в частности, на датчиках Холла, джозефсоновских туннельных контактах (СКВИД-магнитометры) индукционные и на ЯМР-резонансе. Они находят широкое применение в различных приложениях: измерении магнитного поля Земли, в геофизических исследованиях магнитных аномалий и в поиске полезных ископаемых; в военном деле для обнаружения объектов типа подводных лодок, затонувших кораблей или замаскированных танков, искажающих своим полем магнитное поле Земли; для поиска неразорвавшихся или заложенных боеприпасов на местах ведения боевых действий. В связи с миниатюризацией и снижением потребления тока, современными магнитометрами оснащаются смартфоны и планшеты. Ныне магнитометры входят как неотъемлемый компонент в оборудование разведывательных беспилотных летательных аппаратов и спутников-шпионов.

Любопытная деталь: в связи с повышением чувствительности магнитометров, одним из факторов перехода строительства подводных лодок на титановые корпуса вместо стальных корпусов было именно радикальное снижение их заметности в магнитном поле. Ранее подлодкам со стальным корпусом, как, впрочем, и надводным кораблям, приходилось время от времени проходить процедуру демагнетизации.

Магнитометры применяются при бурении скважин и проходке штолен, в археологии для оконтуривания раскопок и поиска артефактов, в биологии и медицине.

Металлодетекторы

Попытки использования напряжённости магнитного поля в военном деле предпринимались со времён Первой мировой войны, оставившей на полях сражений миллионы неразорвавшихся боеприпасов и установленных мин. Наиболее удачной оказалась разработка в начале 40-х годов прошлого столетия, поручика польской армии Юзефа Станислава Косацкого, принятая на вооружение британской армией и сослужившая немалую пользу при обезвреживании минных полей во время преследовании отступающих немцев войсками генерала Монтгомери при второй битве под Эль-Аламейном. Несмотря на то, что оборудование Коcацкого было выполнено на электронных лампах, оно весило всего 14 килограммов вместе с аккумуляторами питания и было настолько эффективным, что его модификации использовались британской армией в течение 50 лет.

Теперь нас не удивляет, в связи с распространением терроризма, прохождение перед посадкой на самолёт или на футбольные матчи сквозь индукционные рамки металлодетекторов, обследование охраной объектов нашего багажа или личный досмотр ручными металлоискателями на предмет обнаружения оружия.

Широкое распространение получили и бытовые металлоискатели, на пляжах модных курортов стала привычной картина искателей утерянных сокровищ, прочёсывающих местные пляжи в надежде найти что-либо ценное.

Эффект Холла и устройства на его основе


Избранная статья

Напряжённость магнитного поля

Общие сведения


Напряжённость магнитного поля и магнитная индукция. Казалось бы, зачем было физикам усложнять и без того сложные физические понятия при описании явлений магнетизма? Два вектора, одинаково направленные, отличающиеся разве что коэффициентом пропорциональности - ну какой в этом смысл с точки зрения простого человека, не слишком обременённого знаниями из области современной физики?

Тем не менее, именно в этом различии скрываются нюансы, позволившие учёным открыть и удивительные свойства различных веществ, и законы их взаимодействия с магнитным полем, и даже изменить наши представления об окружающем мире.

В действительности за этой разницей скрывается различный методологический подход. Упрощенно говоря, в случае использования понятия напряжённости магнитного поля мы пренебрегаем влиянием магнитного поля на вещество в конкретном случае; в случае применения понятия магнитной индукции, мы учитываем этот фактор.

С технической точки зрения, напряжённость магнитного поля сколь угодно сложной конфигурации достаточно просто рассчитать, а результирующую магнитную индукцию - измерить.

За этой кажущейся простотой скрывается титанический труд целой плеяды учёных, разделённых во времени и пространстве. Их идеи и концепции определили и определяют развитие науки и техники в прошлом, настоящем и будущем.

И неважно, как скоро мы овладеем термоядерной энергией с помощью нового поколения термоядерных реакторов, основанных на удержании «горячей» плазмы магнитным полем. Когда отправим в космос новые поколения исследовательских роботов на ракетах, основанных на применении иных принципов, чем сжигание химического топлива. Или, в частности, решим задачу коррекции орбит микроспутников двигателями Холла. Или насколько полно сможем утилизировать энергию Солнца, как быстро и дёшево мы сможем передвигаться по нашей планете - имена первопроходцев науки навеки останутся в нашей памяти.

Уже современному поколению учёных и инженеров двадцать первого века, вооружённому накопленными знаниями своих предшественников, покорится задача магнитной левитации, пока апробированная в лабораториях и пилотных проектах; и проблема извлечения энергии из окружающей среды с помощью технической реализации «демона Максвелла» с использованием невиданных до сих пор материалов и взаимодействий нового типа. Первые прототипы таких устройств уже появились на Kiсkstarter.

При этом будет решена главная проблема человечества - превращения в тепло накопленных за сотни миллионов лет запасов углей и углеводородов, нещадно изменяющих продуктами сгорания климат нашей планеты. И грядущая термоядерная революция, гарантирующая, вслед за её бездумным освоением, тепловую смерть всякой органической жизни на Земле, не станет смертным приговором цивилизации. Ведь энергия любого вида, которую мы расходуем, в конце концов превращается в тепло и нагревает нашу планету.

Дело за малым - временем; доживём - увидим!

Историческая справка

Несмотря на то, что сами магниты и явление намагничивания были известны издавна, научное изучение магнетизма началось с работ французского средневекового учёного Пьера Пелерена де Марикура в далёком 1269 году. Де Марикур подписывал свои труды именем Петруса Перегрина (лат. Petrus Peregrinus).


Исследуя поведение железной иглы возле сферического магнита, учёный обнаружил, что игла по-особенному ведёт себя возле двух точек, названных им полюсами. Так и подмывает дать аналогию с магнитными полюсами Земли, но в то время за такой образ мыслей легко можно было отправиться на костёр! Кроме того, исследователь обнаружил, что любой магнит всегда имеет (в современном представлении) северный и южный полюса. И как не распиливай магнит в продольном или в поперечном сечении, всё равно каждый из полученных магнитов всегда будет иметь два полюса, как бы тонок он ни был.

«Крамольная» идея о том, что Земля сама по себе является магнитом, была опубликована английским врачом и натуралистом Уильямом Гилбертом в работе «De Magnete», увидевшей свет почти три века спустя в 1600 году.


В 1750 году английский учёный Джон Митчелл установил, что магниты притягиваются и отталкиваются (взаимодействуют) в соответствии с законом «обратных квадратов». В 1785 году французский учёный Шарль Огюстен де Кулон экспериментально проверил предположения Митчелла и установил, что северный и южный магнитные полюса не могут быть разъединены. Тем не менее, по аналогии с открытым им ранее законом взаимодействия электрических зарядов, Кулон всё же предположил существование и магнитных зарядов - гипотетических магнитных монополей .

Основываясь на известных ему на то время фактов о магнетизме и на преобладающем в то время в науке методологическом подходе к построению теорий взаимодействия как о некоторых жидкостях, в 1824 году соотечественник Кулона Симеон Дени Пуассон создал первую успешную модель магнетизма. В его теоретической модели магнитное поле описывалось диполями магнитных зарядов.

Но буквально сразу же три открытия подряд поставили под сомнение модель Пуассона. Рассмотрим их ниже.

Датский физик Ханс Кристиан Эрстед в 1819 году заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки, обнаружив, таким образом, взаимосвязь между электричеством и магнетизмом.

В 1820 году французский учёный Андре-Мари Ампер установил, что проводники с токами, текущими в одном направлении притягиваются, а в противоположном - отталкиваются. В том же 1820 году французские физики Жан-Батист Био и Феликс Савар открыли закон названный впоследствии их именами. Этот закон позволял рассчитать напряжённость магнитного поля вокруг любого проводника с током вне зависимости от его геометрической конфигурации.

Обобщая полученные теоретические и экспериментальные данные, Ампер высказал идею об эквивалентности электрических токов и проявлений магнетизма. Он разработал свою модель магнетизма, в которой заменил магнитные диполи циркуляцией электрических токов в крошечных замкнутых петлях. Модель проявления магнетизма Ампера имела преимущество перед моделью Пуассона, поскольку объясняла невозможность разделения полюсов магнитов.

Ампер также предложил для описания таких явлений термин «электродинамика», который расширил применение науки об электричестве к динамическим электрическим объектам, дополняя тем самым электростатику. Пожалуй, наибольшее влияние на понимание сути проявлений магнетизма оказала концепция представления взаимодействия магнитов через силовое поле, описываемое силовыми линиями, предложенная английским учёным Майклом Фарадеем. Открытое в 1831 году Фарадеем явление электромагнитной индукции позднее было объяснено немецким математиком Францем Эрнстом Нейманом. Последний доказал, что возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него, является просто следствием закона Ампера. Нейман ввел в обиход науки понятие векторного магнитного потенциала, который во многом эквивалентен напряжённости силовых линий магнитного поля Фарадея.

Окончательную точку в споре двух моделей магнетизма поставил в 1850 году выдающийся английский физик Уильям Томпсон (лорд Кельвин). Введя понятие намагниченности среды M , в которой имеется магнитное поле, он не только установил зависимость между напряжённостью магнитного поля H и вектором магнитной индукции B , но и определил области применимости этих понятий.

Напряжённость магнитного поля. Определение

Напряжённость магнитного поля - это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности М . В Международной системе единиц (СИ) значение напряжённости магнитного поля определяется формулой:

H = (1/μ 0) ∙ B - M

где μ0 - магнитная постоянная, иногда её называют магнитной проницаемостью вакуума

В системе единиц СГС напряженность магнитного поля определяется по другой формуле:

Н = B - 4∙π∙М

В Международной системе единиц СИ напряжённость магнитного поля измеряется в амперах на метр (А/м), в системе СГС - в эрстедах (Э).

В электротехнике встречается также внесистемная единица измерения напряжённости - ампер-виток на метр. С другими величинами измерения напряжённости магнитного поля, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.

Измерительные приборы для измерения величины напряжённости магнитного поля, как и приборы для измерения магнитной индукции, называют тесламетрами или магнитометрами.

Напряжённость магнитного поля. Физика явлений

Исследовательский токамак (то роидальная ка мера с ма гнитными катушками), работавший в научно-исследовательском институте государственной энергетической компании Hydro-Québec в пригороде Монреаля c 1987 по 1997 год, когда проект был закрыт для экономии бюджетных средств. Установка находится в экспозиции Канадского музея науки и техники

В вакууме (в классическом понимании этого термина) или в отсутствие среды, способной к магнитной поляризации или в случаях, когда магнитной поляризацией среды можно пренебречь, напряжённость магнитного поля Н совпадает (с точностью до коэффициента) с вектором магнитной индукции В . Для системы СГС этот коэффициент равен 1, для системы единиц СИ - μ0.

Напряжённость магнитного поля обусловлена свободными (внешними) токами, которые легко измерить или рассчитать. То есть напряжённость имеет смысл для внешнего магнитного поля, создаваемого катушкой с током, в которую вставлен материал, способный намагничиваться. Если нас не интересует поведение материала под действием магнитного поля, то достаточно оперировать только напряжённостью магнитного поля. Например, напряженности будет достаточно для технического расчёта взаимодействия магнитных полей двух или более катушек с током. Результирующая напряжённость будет векторной суммой полей, создаваемых отдельными катушками с током.

Поскольку большинство электромагнитных устройств работает в воздушной среде, важно знать её магнитную проницаемость. Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π 10⁻⁷ Гн/м.

Иное дело, когда нас интересует именно поведение среды, способной к намагничиванию, например, при использовании ядерных магниторезонансных явлений. При ЯМР ядра атомов, иначе называемые нуклонами и обладающие полуцелым спином (магнитным моментом), при воздействии магнитного поля поглощают или излучают электромагнитную энергию на определённых частотах. В этих случаях необходимо учитывать именно магнитную индукцию.

Применение напряжённости магнитного поля в технике

В большинстве случаев практического применения магнитного поля, например, для его создания или для измерения его величины, напряжённость магнитного поля играет ключевую роль. Существует множество примеров использования магнитного поля, в первую очередь в измерительной технике и в различных установках для проведения экспериментов.

Магнитное поле определённой силы и конфигурации удерживает плазменные шнуры или потоки заряженных частиц в исследовательских термоядерных реакторах и в ускорителях элементарных частиц, предотвращая тем самым охлаждение плазмы при контакте с ограждающими стенками. Оно же отклоняет потоки ионов или электронов в спектрометрах и кинескопах.

Измерение напряжённости магнитного поля Земли в различных точках очень важно для оценки состояния её магнитосферы. Существует даже целая сеть наземных станций и группировок научных спутников для мониторинга напряжённости магнитного поля Земли. Их работа позволяет предсказывать магнитные бури, возникающие на Солнце, сводя к минимуму, насколько это возможно, их последствия.


Измерение напряженности поля даёт возможность проводить различные изыскания, сортировать материалы и мусор, а также обеспечивать нашу безопасность, обнаруживая оружие террористов или заложённые мины.

Магнитометры

Магнитометрами называется целый класс измерительных приборов, предназначенных для измерения намагниченности материалов или для определения силы и направления магнитного поля.

Первый магнитометр был изобретён великим немецким математиком и физиком Карлом Фридрихом Гауссом в 1833 году. Этот прибор представлял собой оптический прибор с крутящимся намагниченным стержнем, подвешенным на золотой нити, и приклеенным к нему перпендикулярно оси магнита зеркалом. Измерялось различие колебаний намагниченного и размагниченного стержня.

Ныне используются более чувствительные магнитометры на иных принципах, в частности, на датчиках Холла, джозефсоновских туннельных контактах (СКВИД-магнитометры) индукционные и на ЯМР-резонансе. Они находят широкое применение в различных приложениях: измерении магнитного поля Земли, в геофизических исследованиях магнитных аномалий и в поиске полезных ископаемых; в военном деле для обнаружения объектов типа подводных лодок, затонувших кораблей или замаскированных танков, искажающих своим полем магнитное поле Земли; для поиска неразорвавшихся или заложенных боеприпасов на местах ведения боевых действий. В связи с миниатюризацией и снижением потребления тока, современными магнитометрами оснащаются смартфоны и планшеты. Ныне магнитометры входят как неотъемлемый компонент в оборудование разведывательных беспилотных летательных аппаратов и спутников-шпионов.

Любопытная деталь: в связи с повышением чувствительности магнитометров, одним из факторов перехода строительства подводных лодок на титановые корпуса вместо стальных корпусов было именно радикальное снижение их заметности в магнитном поле. Ранее подлодкам со стальным корпусом, как, впрочем, и надводным кораблям, приходилось время от времени проходить процедуру демагнетизации.

Магнитометры применяются при бурении скважин и проходке штолен, в археологии для оконтуривания раскопок и поиска артефактов, в биологии и медицине.

Металлодетекторы

Попытки использования напряжённости магнитного поля в военном деле предпринимались со времён Первой мировой войны, оставившей на полях сражений миллионы неразорвавшихся боеприпасов и установленных мин. Наиболее удачной оказалась разработка в начале 40-х годов прошлого столетия, поручика польской армии Юзефа Станислава Косацкого, принятая на вооружение британской армией и сослужившая немалую пользу при обезвреживании минных полей во время преследовании отступающих немцев войсками генерала Монтгомери при второй битве под Эль-Аламейном. Несмотря на то, что оборудование Коcацкого было выполнено на электронных лампах, оно весило всего 14 килограммов вместе с аккумуляторами питания и было настолько эффективным, что его модификации использовались британской армией в течение 50 лет.

Теперь нас не удивляет, в связи с распространением терроризма, прохождение перед посадкой на самолёт или на футбольные матчи сквозь индукционные рамки металлодетекторов, обследование охраной объектов нашего багажа или личный досмотр ручными металлоискателями на предмет обнаружения оружия.

Широкое распространение получили и бытовые металлоискатели, на пляжах модных курортов стала привычной картина искателей утерянных сокровищ, прочёсывающих местные пляжи в надежде найти что-либо ценное.

Эффект Холла и устройства на его основе


Магнитное поле

Картина силовых линий магнитного поля , создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

См. также: Электромагнитное поле

См. также: Магнетизм

Магни́тное по́ле - силовое поле , действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом , независимо от состояния их движения ; магнитная составляющая электромагнитного поля .

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц , хотя в заметно меньшей степени) (постоянные магниты ).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля .

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения -векторное поле , определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом .

Магнитные поля являются необходимым (в контексте ) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле , проявлениями которого являются, в частности, свет и все другие электромагнитные волны .

Электрический ток (I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника.

    С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

    1 Источники магнитного поля

    2 Вычисление

    3 Проявление магнитного поля

    • 3.1 Взаимодействие двух магнитов

      3.2 Явление электромагнитной индукции

    4 Математическое представление

    • 4.1 Единицы измерения

    5 Энергия магнитного поля

    6 Магнитные свойства веществ

    7 Токи Фуко

    8 История развития представлений о магнитном поле

    9 См. также

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц , или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера ). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла .

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В Международной системе единиц (СИ) сила Лоренца выражается так:

в системе единиц СГС :

где квадратными скобками обозначено векторное произведение .

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током . Сила, действующая на проводник с током называется силой Ампера . Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов : одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями , и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь , помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Основная статья: Электромагнитная индукция

Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции , порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура-проводника такая ЭДС возникает посредством действия силы Лоренца).

Математическое представление

Магнитное поле в макроскопическом описании представлено двумя различными векторными полями , обозначаемым как H и B .

H называется напряжённостью магнитного поля ; B называется магнитной индукцией . Термин магнитное поле применяется к обоим этим векторным полям (хотя исторически относился в первую очередь к H ).

Магнитная индукция B является основной характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B и E на самом деле являются компонентами единого тензора электромагнитного поля . Аналогично, в единый тензор объединяются величины H и электрическая индукция D . В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B и E должны рассматриваться совместно.

Впрочем, в вакууме (при отсутствии магнетиков), а значит и на фундаментальном микроскопическом уровне, H и B совпадают (в системе СИ с точностью до условного постоянного множителя, а в СГС - полностью), что позволяет в принципе авторам, особенно тем, кто не использует СИ, выбирать для фундаментального описания магнитного поля H или B произвольно, чем они нередко и пользуются (к тому же, следуя в этом традиции). Авторы же, пользующиеся системой СИ, систематически отдают и здесь в этом отношении предпочтение вектору B , хотя бы потому, что именно через него прямо выражается сила Лоренца.

Единицы измерения

Величина B в системе единиц СИ измеряется в теслах (русское обозначение: Тл; международное: T), в системе СГС - в гауссах (русское обозначение: Гс; международное: G). Связь между ними выражается соотношениями: 1 Гс = 1·10 -4 Тл и 1 Тл = 1·10 4 Гс.

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах (русское обозначение: Э; международное: Oe) в СГС . Связь между ними выражается соотношением: 1 эрстед = 1000/(4π) A/м ≈ 79,5774715 А/м.

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

H - напряжённость магнитного поля ,

B - магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах .

Плотность энергии в этом приближении равна:

Компоненты тензора магнитной проницаемости ,

Тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости,

-магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

Диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах - и только в них! - равны нулю).

В изотропном линейном магнетике:

Относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Ф - магнитный поток ,

L - индуктивность катушки или витка с током.

Магнитные свойства веществ

С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит - в контексте этого параграфа - и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопические структуры и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

    Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов : магнитные моменты веществ направлены противоположно и равны по силе.

    Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.

    Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

    Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

    Ферримагнетики - материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.

    К перечисленным выше группам веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы .

Токи Фуко

Основная статья: Токи Фуко

Токи Фуко́ (вихревые токи) - замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи .

История развития представлений о магнитном поле

Один из первых рисунков магнитного поля (Рене Декарт , 1644)

Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами » по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта « De Magnete » , заложила основы магнетизма как науки.

В 1750 году Джон Мичелл заявил, что магнитные полюса притягиваются и отталкиваются в соответствии с законом обратных квадратов. Шарль-Огюстен де Кулон экспериментально проверил это утверждение в 1785 году и прямо заявил, что Северный и Южный полюс не могут быть разделены. Основываясь на этой силе, существующей между полюсами, Симеон Дени Пуассон , (1781-1840) создал первую успешную модель магнитного поля, которую он представил в 1824 году. В этой модели магнитное H-поле производится магнитными полюсами и магнетизм происходит из-за нескольких пар (север/юг) магнитных полюсов (диполей).

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа , который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем , который, как и закон Био-Савара-Лапласа, правильно описал магнитное поле, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля . Кроме того, в этой работе, Ампер ввел термин «электродинамика » для описания взаимосвязи между электричеством и магнетизмом.

В 1831 году Майкл Фарадей открыл электромагнитную индукцию, когда он обнаружил, что переменное магнитное поле порождает электричество. Он создал определение этого феномена, которое известно как закон электромагнитной индукции Фарадея . Позже Франц Эрнст Нейман доказал, что для движущегося проводника в магнитном поле, индукция является следствием действия закона Ампера. При этом он ввел векторный потенциал электромагнитного поля , который, как позднее было показано, был эквивалентен основному механизму, предложенному Фарадеем.

В 1850 году лорд Кельвин , тогда известный как Уильям Томсон, различие между двумя магнитными полями обозначил как поля H и B . Первое было применимо к модели Пуассона, а второе - к модели индукции Ампера. Кроме того, он вывел как H и B связаны друг с другом.

Между 1861 и 1865 годами Джеймс Клерк Максвелл разработал и опубликовал уравнения Максвелла , которые объяснили и объединили электричество и магнетизм в классической физике . Первая подборка этих уравнений была опубликована в статье в 1861 году, озаглавленной « On Physical Lines of Force » . Эти уравнения были признаны действительными, хотя и неполными. Максвелл завершил свои уравнения в своей более поздней работе 1865 года « Динамическая теория электромагнитного поля » и определил, что свет представляет собой электромагнитные волны. Генрих Герц экспериментально подтвердил этот факт в 1887 году.

Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета. (См. Движущийся магнит и проблема проводника - мысленный эксперимент , который в конечном итоге помог Эйнштейну в разработке специальной теории относительности ). Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

Элементы магнитного поля Земли

Характеристикой магнитного поля Земли, как и всякого магнитного поля, служит его напряженность F или ее составляющие. Для разложения вектора F на составляющие обычно принимают прямоугольную систему координат, в которой ось х ориентируют по направлению географического меридиана, у - по направлению параллели, при этом положительным считается направление оси х к северу, а оси у - к востоку. Ось z в таком случае будет направлена сверху вниз к центру Земли.

Поместим начало координат в точку, где происходит наблюдение напряженности магнитного поля Земли. Проекция этого вектора на ось х носит название северной составляющей , проекция на ось у - восточной составляющей и проекция на ось z - вертикальной составляющей , и обозначаются они через Hx, Hy, Hz соответственно. Проекцию F на горизонтальную плоскость называют горизонтальной составляющей Н . Вертикальная плоскость, в которой лежит вектор F , называется плоскостью магнитного меридиана , а угол между географическим и магнитным меридианами - магнитным склонением , которое обозначается через D . Наконец, угол между горизонтальной плоскостью и направлением вектора F носит название магнитного наклонения I .

Нетрудно видеть, что при таком расположении осей координат, как показано на рисунке, положительным склонением будет восточное, т. е. когда вектор Н отклонен от севера к востоку, а отрицательным - западное.

Наклонение I положительно , когда вектор F направлен вниз от земной поверхности, что имеет место в северном полушарии, и отрицательно , когда F направлен вверх, т. е. в южном полушарии. F или Н - международные обозначения полного вектора магнитного поля Земли и величины древнего поля соответственно. Иногда напряженность магнитного поля Земли обозначают через Т , но так же обозначается и модуль полного вектора.

Склонение D , наклонение I , горизонтальная составляющая Н , вертикальная составляющая Hz , северная Hx и восточная Hy составляющие носят название элементов земного магнетизма , которые можно рассматривать как координаты конца вектора F в различных системах координат. Так, например, Hx, Hy, Hz - не что иное, как координаты конца вектора F в прямоугольной системе координат ; Hz, H и D - координаты в цилиндрической системе и F, D и I - координаты в сферической системе координат. В каждой из этих трех систем координаты независимы друг от друга.

Величины Hx, Hy, Hz и Н в ряде случаев называют силовыми компонентами земного магнитного поля, а D и I - угловыми .

Как показывают наблюдения, ни один из элементов земного магнетизма не остается постоянным во времени, а непрерывно меняет свою величину от часа к часу и от года к году. Такие изменения получили название вариаций элементов земного магнетизма . Если наблюдать за этими вариациями в течение короткого промежутка времени (порядка суток), то можно заметить, что они имеют периодический характер, однако периоды, амплитуды и фазы их чрезвычайно разнообразны. Если же наблюдения ведутся длительно (несколько лет) с ежегодным определением среднегодового значения элементов, то легко установить, что среднегодовые значения также меняются, но характер изменения уже монотонный, и периодичность их выявляется лишь при очень большой длительности наблюдений (порядка многих десятков и сотен лет).

Медленные вариации элементов земного магнетизма получили название вековых вариаций , их величина обычно составляет десятки гамм в год. Вековые вариации элементов связаны с источниками, лежащими внутри земного шара, и вызываются теми же причинами, что и магнитное поле Земли.

Изменение среднегодовых значений того или иного элемента в течение года называется вековым ходом .

Быстротечные вариации периодического характера, весьма различные по амплитуде, имеют своим источником электрические токи в высоких слоях атмосферы.

Данные о быстротечных вариациях магнитного поля Земли в виде часовых и минутных значений элементов земного магнетизма представлены на сайте Мирового центра данных по солнечно-земной физике.

Проекция Гаусса - Крюгера

Материал из Википедии - свободной энциклопедии

(перенаправлено с «Система координат Гаусса-Крюгера »)

Проекция Гаусса - Крюгера - поперечная цилиндрическая равноугольная картографическая проекция , разработанная немецкими учёными Карлом Гауссом и Луи Крюгером . Применение этой проекции даёт возможность практически без существенных искажений изобразить довольно значительные участки земной поверхности и, что очень важно, построить на этой территории систему плоских прямоугольных координат . Эта система является наиболее простой и удобной при проведении инженерных и топографо-геодезических работ .

Измерения магнитного поля применительно к масс-спектрометрии.
Измерение магнитного поля с помощью флюксметра обычпо-производится в предварительных опытах. В этих опытах устанавливается связь между силой тока, протекающего через соленоид, и индукцией магнитного поля.
Измерение магнитного поля, вызванного током, дает один из лучших способов определения величины тока.
Измерения магнитного поля в точках, обозначенных на рис. 1.4, на высоте 900 мм от уровня перекрытия показали, что средний уровень напряженности магнитного поля в зале электролиза составляет 30 - 50 А / см и не превышает 130 А / см. Уровень магнитного поля, измеренный на высоте, соответствующей половине высоты борта электролизера и на удалении от него на 5 - 10 см, составляет 20 - 60 А / см. Вблизи углов или выступающих элементов (стыки секций, фланцы) корпуса электролизера напряженность поля повышается до 150 А / см и более.
Для измерения магнитного поля используются милливеберметр и измерительная катушка, которая намотана непосредственно на соленоид. Параметры катушки указаны на установке.
Для измерения магнитного поля применяется плоская катушка г, содержащая w витков; площадь, ограничиваемая витками (в плоскости витков), равна S. Поместив катушку в области поля, подлежащего измерению (например, у полюсных наконечников электрической машины), ее поворачивают на 180 и отсчитывают показание кулонметра.
Для измерения магнитного поля используются феррозондовые, протонные, квантовые и магнитостатические магнитометры.
Для измерения магнитного поля применили плоскую катушку (все витки расположены в одной плоскости), содержащую w витков; площадь, ограничиваемая витками (в плоскости витков), равна S. Катушку поместили в область поля, подлежащего измерению (например, у полюсных наконечников электрической Машины), быстро повернули на 180 и отсчитали показание кулонметра.
Для измерения магнитного поля применили плоскую катушку (все витки расположены в одной плоскости), содержащую w витков; площадь, ограничиваемая витками в плоскости витков), равна S. Катушку поместили в область поля, подлежащего измерению (например, у полюсных наконечников электрической машины), быстро повернули на 180 и отсчитали показание кулонметра.
Технические данные.| Структурная схема тесламетра Холла. Для измерения магнитного поля Земли используются приборы с механическими преобразователями, называемые магнитометрами. Широко известны магнитные компас, теодолит, буссоль. Абсолютные магнитные теодолиты применяются для измерения малых значений магнитных индукций. При этом погрешность измерения может быть доведена до сотых долей процента. Гораздо шире используются приборы, основанные на относительных методах измерения: кварцевые и крутильные магнитометры, различного рода магнитные весы.
Единица измерения магнитного поля в системе СИ называется вебер на метр квадратный.
Метод измерения магнитного поля, основанный на ядерном резонансе, справедливо считается абсолютным и наиболее точным из существующих в настоящее время, однако он не рассматривается здесь из-за его сложности. Изложение ограничивается рассмотрением двух методов измерения магнитного поля с помощью: а) феррозондов и б) датчиков Холла. Если феррозондовые датчики магнитного поля предназначены в основном для измерения магнитных полей меньше одного эрстеда, то датчиками Холла измеряют поля от одного до нескольких тысяч эрстед.
При измерении магнитного поля с помощью флкжсметра ис - пользуется обычно один из трех способов работы.
Канал для измерения магнитного поля частотой 4 Гц имеет в своем составе управляемый процессором ступенчатый регулятор усиления и автоматически переключаемый избирательный усилитель. Примененный процессор P1C16F877 - 201 / P в приемнике БИТА-1 кроме функции управления выполняет функции обработки поступающих сигналов и подготовки для отображения результатов измерения.

Наибольшая точность измерения магнитного поля достигается при использовании магнитного ядерного резонанса.
Другой единицей измерения магнитного поля является максвелл, причем 1 еб108 макс.
Поля между электродами.| Принципиальная схема измерительного устройства с одной рамкой. Изменять место измерения магнитного поля на поверхности, оставляя электроды на своих местах. При этом напряженность или направление магнитного поля дается в функции места измерения.
Блок-схема прибора для измерения магнитного поля с помощью датчика Холла изображена на рис. 10.15. Для определения величины магнитного поля необходимо измерить значение ЭДС Холла и ток, протекающий через датчик.
Ниже приводится сводка методов измерений магнитного поля и соответствующих им точностей.
Необходимо подчеркнуть особенное значение измерений магнитного поля методом индукционного толчка для тех случаев, когда нас интересует магнитное поле внутри твердого тела.
В феррозондовых магнитометрах принцип измерения магнитного поля основан на быстром намагничивании магнитомягкого пермаллоевого сердечника под действием внешнего магнитного поля.
Таким образом, при измерении магнитного поля потокочувстви-тельная головка обнаруживает дефект по наличию максимума кривой распределения поля на поверхности шва. При использовании индукционной головки дефект выявляется по двухполярному импульсу, возникающему при дифференцировании неоднородности магнитного поля, обусловленной дефектом. Аналогичные импульсы воспроизводятся индукционной головкой также от края ленты и кромок усиления шва. Следовательно, характеристики, воспроизводимые с помощью ЧПГ, нагляднее и значительно проще поддаются расшифровке. Большое количество импульсных сигналов, возникающих на выходе индукционной головки, здесь заменяется графиком, описывающим распределение магнитного поля на поверхности сварного шва.
Принцип действия трассоискателя основан на измерении магнитного поля, создаваемого специальным тональным генератором вокруг исследуемого трубопровода; звуковая частота принимается переносным приемником, снабженным телефонами.
Технические характеристики ДПТ-1. Принцип его работы основан на измерении магнитного поля рассеяния в зоне трещины.
Могут быть использованы любые другие методы измерения магнитного поля для получения сигнала, посредством которого осуществляется стабилизация. Будучи прямыми, эти методы обладают преимуществом по сравнению со стабилизаторами магнита, при помощи которых контролируется ток, проходящий через катушки электромагнита, Несмотря на сравнительно простую аппаратуру, отсутствуют конструкции, использующие ядерный магнитный резонанс для автоматической регистрации массовых чисел на масс-спектре. Определение максимума на резонансной кривой как таковое не всегда применимо, даже при использовании для этой цели первой производной кривой.

Все рассмотренные до сих пор методы измерения магнитного поля основаны на явлении электромагнитной индукции. Существует ряд иных методов измерения. Еще в прошлом столетии было известно, что электрическое сопротивление висмутовой проволоки сильно зависит от напряженности магнитного поля, в которое она помещена. Тогда же было предложено воспользоваться этой зависимостью для определения величины напряженности поля. Обычно из висмутовой проволоки изготовляется небольшая плоская спираль, сопротивление которой измеряется мостиковой схемой. Однако в последнее время в литературе появилось указание о том, что точность метода может быть значительно повышена (до нескольких сотых процента), если температура спирали поддерживается постоянной.
Как правило, в качестве датчика для измерения узколокального магнитного поля дефекта применялась обычная плоская катушка, размеры которой значительно больше поперечных размеров дефекта. Вследствие этого датчик измерял усредненное поле, резко отличающееся в отдельных случаях от поля в фиксированной точке.
Использование холлотрона для поиска. Холлотронные преобразователи могут быть использованы для обнаружения и измерения магнитного поля рассеяния, возникающего вблизи дефекта в детали, путем непосредственного расположения преобразователей над дефектом и намагничивания исследуемой детали внешним постоянным магнитным полем.
Индукционный каротаж - геофизический метод исследования в скважинах, основанный на измерении магнитного поля вихревых токов, индуцированных в г.п. Скважинный снаряд для индукционного каротажа включает генераторную, фокусирующие и приемную катушки, расположенные коаксиально. Переменный элек-трич ток частотой 10 - 20 кГц, пропускаемый по генераторной катушке, создает магнитное поле, к-рое индуцирует вихревые токи в т.п., окружающих скважину. Под действием магнитного поля этих токов (вторичное поле) в приемной катушке возникает эдс, величина к-рой зависит от удельной электрич. Для устранения влияния магнитного поля генераторной катушки на приемную применяют компенсирующие элементы (напр. Полезный сигнал с приемной катушки поступает на усилитель, расположенный в скважине, затем по кабелю на поверхность, где регистрируется.
Геофизические методы включают гравиразведку (измерение силы тяжести), магнитную разведку (измерение магнитного поля), сейсморазведку (измерение скорости распространения взрывных волн) и другие. Эти методы позволяют оценить строение района при выборе наиболее перспективных геологических структур. Геофизическими способами с различной ступенью приближения можно изучать земные толщи на глубинах до нескольких десятков километров.
Пример данных измерений на S3 - 3 постоянного электрического поля и спектральных мощностей (6 л / л 2 и г. Кроме этих основных измерений, были выполнены (очевидно, с меньшей точностью) измерения магнитного поля, позволившие грубо оценить плотность продольных токов.
Связь между t / x и В позволяет использовать эффект Холла в образце с известными параметрами для измерения магнитного поля.
Некоторые типы конструкций магнитомодуляционных датчиков. Датчики (измерители) магнитного поля (называемые также магнитомодуляционными зондами, феррозондами и др.) широко применяются для измерения магнитного поля Земли, геомагнитной разведки полезных ископаемых, в дистанционных магнитных компасах, метал-лоискателях, датчиках перемещения и положения тел в пространстве и др. Принцип действия датчиков подобен принципу действия магнитных усилителей, в которых роль обмотки управления, создающей управляющее магнитное поле, выполняет внешнее измеряемое поле.
Окончательная регулировка полюсных наконечников осуществляется при помощи сигнала магнитного ядерного резонанса, который в действительности является наиболее чувствительным методом для измерения магнитного поля и проверки его однородности. Отсутствие необходимой однородности лоля приводит к расширению спектральных пиков и потере разрешающей способности. Постоянный магнит обладает тем преимуществом, что не требует стабилизированных источников питания.
Весьма точный (1: 40 000) метод измерения Н основан на явлении ядерного магнитного резонанса, что позволяет свести измерение магнитного поля к измерению частоты, одной из наиболее точно измеряемых физических величин. Так как зависимость резонансной угловой частоты от поля выражается через атомные постоянные, то метод не требует градуировки. Современная стандартная техника измерения ядерного магнитного резонанса позволяет измерять магнитные поля в пределах от 200 до 20 000 эрст. В последнее время для измерения слабых магнитных полей, порядка земного поля, используется протонный магнитный резонанс. Оба метода требуют сложного оборудования и не могут быть широко использованы в обычных технических измерениях.
В разнообразных схемах ручной или автоматической регулировки МЭР для определения величины нагрузки на регулируемый анод или группу анодов в большинстве случаев используются электрические параметры - измерение магнитного поля проводника, перепад напряжения на сопротивлении определенного участка проводника или аналогичные показатели.
Приборы с ферромодуляционными преобразователями обладают высокой чувствительностью, высокой точностью измерения, позволяют вести непрерывные измерения, что обеспечило им широкое распространение, в частности, для измерения магнитного поля Земли.

Имеются сведения о возможности использования для упомянутой цели при электрометрических обследованиях соответствующих методов и приборов, как например: метода градиента потенциала постоянного тока; метода бесконтактных определений тока в трубопроводе на основе измерения магнитного поля; метода измерения напряженности собственного поля трубопровода, отражающего состояние металла трубы; метода контроля состояния трубопроводов с помощью электромагнитных волн. Однако и эти дополнительные методы поиска опасных дефектов металла подземных трубопроводов надежного нахождения таких дефектов не гарантируют.
Электрическая схема дефектоскопа типа БИЭК-59. Для неразрушающего контроля качества термической обработки и правильности проведения низкотемпературного отпуска более крупных колец (диаметром до 500 - 600 мм), а также для контроля крупногабаритных шариков и роликов применяют приборы, основной частью которых является электромагнит с разветвленной магнитной цепью, в центре которого помещен феррозон-довый датчик для измерения магнитного поля. Таким является прибор типа КТР-3, работающий от сети переменного тока, с напряжением 220 в.
Приборы с ферромодуляционными преобразователями отличаются высокой чувствительностью (порог чувствительности составляет доли нанотесла), сравнительно высокой точностью (погрешность измерения в зависимости от значения измеряемой индукции может быть от 0 02 до 1 %), позволяют вести непрерывные измерения, что обеспечило им широкое распространение, в частности для измерения магнитного поля Земли.
Расчетные профили прокладываются инструментально строго вкрест простирания выявленных магнитных аномалий при основной съемке. Измерения магнитного поля проводятся на расчетных профилях с высокой точностью и детальностью, что позволяет изучать во всех деталях магнитовозмущающие объекты.
Основное преимущество автомобильной съемки перед пешеходной заключается в высокой производительности и более низкой стоимости работ. Измерения магнитного поля производятся в движении, автоматически, в условиях влияния несущей платформы (прицепа) и автомобиля, с постоянным интервалом между точками наблюдений. Решаемые геологические задачи, условия применения, выбор участков работ, масштабов съемки аналогичны приведенным для пешеходной съемки. Автомагнитные измерения проводятся в площадном и профильном (маршрутном) вариантах. Площадные съемки масштаба 1: 25000, 1: 10000, 1: 5000, 1: 2000 позволяют в кратчайшие сроки решать задачи геолого-структурного картирования больших площадей, участков детализации аэромагнитных и аэрогамма-спектрометрических аномалий. Съемка проводится как по заранее разбитой топографо-геодезической сети, так и по маршрутам, прокладываемым с помощью топопривязчика типа ТМГ-УАЗ-469 между инструментально проложенными магистралями.
Привязка наблюдений осуществляется способом засечек береговых ориентиров или по небесным светилам с применением радиогеодезических и радионавигационных средств, а также спутниковых навигационных систем. Измерения магнитного поля, определение координат, скорости и курса судна, а также глубин дна синхронизируются до 60 с при профильных региональных съемках и до 30 с при детальных площадных съемках. С этой целью магнитная и гидрографическая лаборатория соединяются звуковой сигнализацией.
Очевидно, что он совпадает с нормалью к плоскости, проходящей через ось исследуемой скважины. Поэтому измерения магнитного поля однозначно определяют пространственное положение плоскости, проходящей через точку измерения и ось исследуемой скважины. Измеряя магнитное поле в нескольких точках наклонно-направленной скважины, ствол которой не лежит в одной плоскости со стволом аварийной скважины, можно получить систему таких плоскостей и найти пространственное положение линии их пересечения. Эта линия совпадает со стволом аварийной скважины. Таким образом, по измерениям магнитного поля в наклонно-направленной скважине удается определять пространственное положение ствола исследуемой аварийной скважины. Для пересечения скважин в какой-либо точке их стволы в районе пересечения должны лежать в одной плоскости. Вектор напряженности магнитного поля линейного тока, текущего по стволу фонтанирующей скважины, всегда перпендикулярен к этой плоскости. Это свойство используют при проведении прямой стыковки противофонтанной скважины с аварийным стволом. С этой целью плоскость искривления противофонтанной скважины выбирают так, чтобы вектор аномального магнитного поля был перпендикулярен этой плоскости, при этом знак отклонения от перпендикулярности используют для выбора азимута и угла наклона противофонтанной скважины.
Детектирование ЭПР-поглощения при большой амплитуде модуляции магнитного поля. В принципе условие резонанса hvg Hr справедливо для любых частот. Для измерения магнитного поля земли, равного всего - - 0 5 Гс, геологи используют чувствительный магнитометр, основанный на эффекте ЭПР. Однако практически выбор частоты излучения ограничен рядом факторов.
Наиболее точен метод Кот-тона и Дю Пуа - метод магнитных весов , в котором измеряется сила, возбуждаемая в проводнике известной длины, находящемся под током в магнитном поле. Остальные методы измерения магнитного поля непригодны для использования их в качестве масс-отметчиков в масс-спектрометре по многим причинам.
Тороидальная компенсационная катушка. Ток в катушке измеряется компенсатором постоянного тока. Если прибор предназначен для измерения магнитного поля в пространстве, не содержащем ферромагнитные массы, то компенсационную катушку выполняют в виде соленоида.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама