THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В 60-х годах XIX столетия Д.К. Максвелл, ознакомившись с работами Фарадея, решил придать теории электричества и магнетизма математическую форму. Обобщив законы, установленные экспериментальным путем – закон полного тока, закон электромагнитной индукции и теорему Остроградского-Гаусса, - Максвелл дал полную картину электромагнитного поля. В теории Максвелла решается основная задача электродинамики – установление характеристик электромагнитного поля заданной системы электрических зарядов и токов, т.е. определение напряженности электрического поля Е и индукции магнитного поля В при известных величинах зарядов и токов, создающих эти поля. Необходимо отметить, что в своих выводах Максвелл не мог воспользоваться теорией относительности, так как она появилась лишь спустя 50 лет. Не были изучены электрические свойства веществ, не была установлена связь электромагнетизма и света. Другими словами, многие из доводов, которыми пользуемся мы сейчас при теоретическом обобщении результатов, были немыслимы во времена Максвелла.

Данная теория явилась величайшим вкладом в развитие классической физики. Она позволила с единой точки зрения охватить огромный круг явлений, начиная от электростатического поля неподвижных зарядов и кончая электромагнитной природой света. В этой теории не рассматривается молекулярное строение среды и внутренний механизм процессов, происходящих в веществе, находящемся в электромагнитном поле. Теория Максвелла – макроскопическая, в ней рассматриваются электромагнитные поля таких зарядов и токов, пространственная протяженность которых неизмеримо больше размеров атомов и молекул.

Электрические и магнитные свойства среды в теории Максвелла характеризуются тремя величинами: относительной диэлектрической проницаемостью ε, относительной магнитной проницаемостью μ и удельной электрической проводимостью γ. Предполагается, что эти параметры среды известны из опыта.

Данная теория представлена в виде системы четырех уравнений, называемых уравнениями Максвелла . Эти уравнения принято записывать в дифференциальной и интегральной форме. Уравнения в дифференциальной форме показывают, как связаны между собой характеристики электромагнитного поля и плотности электрических зарядов и токов в каждой точке этого поля. В данном разделе рассмотрены только уравнения Максвелла в интегральной форме – они содержат соотношения, справедливые для мысленно проведенных в электромагнитном поле неподвижных замкнутых контуров и поверхностей.

4.2. Первое уравнение Максвелла.@

При рассмотрении неподвижного контура, находящегося в переменном магнитном поле, было установлено, что в нем появляется э.д.с. индукции .

С другой стороны, появление э.д.с., по определению, связано с работой сторонних сил неэлектростатического происхождения, и

. Таким образом, можно записать


.

Под действием переменного магнитного поля в контуре возникает электрическое поле . Различие между этим полем и электростатическим заключается в том, что циркуляция вектора напряженности электростатического полявдоль замкнутого контура равна нулю, а циркуляцияпо замкнутому контуру не равна нулю. Данное электрическое поле имеет непрерывные силовые линии, т.е. являетсявихревым . Оно вызывает в контуре направленное движение электронов по замкнутым траекториям. Таким образом, всякое изменение магнитного поля вызывает в окружающем пространстве появление вихревого электрического поля.

Воспользуемся выражением для магнитного потока:


Если поверхность S, которую пронзает магнитный поток, и ограничивающий ее электрический контурLнеподвижны, то операции интегрирования по поверхности и дифференцирования по времени можно поменять местами. После этого мы получаем


.

В связи с тем, что вектор В зависит в общем случае как от времени, так и от координат, под знаком интеграла записывается символ частной производной В по времени (тогда как магнитный поток

является функцией только времени).

Поскольку электрическое поле может быть и стационарным (электростатическим), и вихревым, то в общем случае

Циркуляция стационарного поля, как известно, равна нулю, поэтому

.Итак, циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру L равна взятой с обратным знаком скорости изменения магнитного потока сквозь поверхность S , ограниченную этим контуром .

Полученное уравнение - это первое уравнение Максвелла в интегральной форме. Оно показывает, что источником электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля. Явление возникновения в пространстве вихревого электрического поля под влиянием переменного магнитного было использовано для создания индукционного ускорителя электронов – бетатрона. Бетатроны применяются в промышленности для просвечивания толстых металлических плит, в медицине - для лучевой терапии и в различных научных исследованиях.

Основы теории Максвелла для электромагнитного поля

§ 137. Вихревое электрическое поле

Из закона Фарадея (см. (123.2))

ξ = d Ф/ dt следует, что любое изменение

сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследствие этого появляется индукционный ток. Сле­довательно, возникновение э. д.с. электро­магнитной индукции возможно и в непод­вижном контуре, находящемся в перемен­ном магнитном поле. Однако э. д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы - силы неэлектростатического про­исхождения (см. § 97). Поэтому возника­ет вопрос о природе сторонних сил в дан­ном случае.

Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с хи­мическими процессами в контуре; их воз­никновение также нельзя объяснить сила­ми Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнит­ное поле возбуждает в окружающем про­странстве электрическое поле, которое

и является причиной возникновения ин­дукционного тока в контуре. Согласно представлениям Максвелла, контур, в ко­тором появляется э. д.с., играет второсте­пенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.

Итак, по Максвеллу, изменяющееся во времени магнитное поле порождает элек­трическое поле Е B , циркуляция которого, по (123.3),

http://pandia.ru/text/80/088/images/image002_18.jpg" width="102" height="48"> (см. (120.2)), получим

Дифференция" href="/text/category/differentciya/" rel="bookmark">дифференцирования и ин­тегрирования можно поменять местами. Следовательно,

http://pandia.ru/text/80/088/images/image005_5.jpg" width="58" height="48 src=">является

функцией только от времени.

Согласно (83.3), циркуляция вектора напряженности электростатического поля (обозначим его e q) вдоль любого замкну­того контура равна нулю:

Вихрь" href="/text/category/vihrmz/" rel="bookmark">вихревым .

§ 138. Ток смещения

Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трического поля должно вызывать появле­ние в окружающем пространстве вихрево­го магнитного поля. Для установления количественных соотношений между изме­няющимся электрическим полем и вызыва­емым им магнитным полем Максвелл ввел в рассмотрение так называемый ток сме­щения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор

http://pandia.ru/text/80/088/images/image008_3.jpg" width="308" height="135 src=">

(поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтег­ральное выражение в (138.1) можно рас­сматривать как частный случай скалярного произведения (д D /д t)dS , когда д D /д t и dS взаимно параллельны. Поэтому для обще­го случая можно записать

Сравнивая это выражение с I =I см =http://pandia.ru/text/80/088/images/image011_2.jpg" width="241" height="39 src=">

Выражение (138.2) и было названо Мак­свеллом плотностью тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и j см. При зарядке конденса­тора (рис. 197, а) через проводник, соеди­няющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается, вектор D растет со временем;

следовательно, д D /д t>0, т. е. вектор д D /д t

DIV_ADBLOCK154">

д D /д t и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, сое­диняющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется, вектор D убывает со временем; следовательно, д D /д t<0, т. е. вектор at

д D /д t направлен противоположно вектору

D. Однако вектор д D /д t направлен опять так

же, как и вектор j . Из разобранных при­меров следует, что направление вектора j , а следовательно, и вектора j см совпадает

с направлением вектора д D /д t,

как это и следует из формулы (138.2).

Подчеркнем, что из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно - способность создавать в окружаю­щем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем про­странстве магнитное поле (линии индук­ции магнитных полей токов смещения при зарядке и разрядке конденсатора показа­ны на рис. 197 штриховой линией).

В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D =e0E +P , где Е - напряжен­ность электростатического поля, а Р - поляризованность (см. § 88), то плотность тока смещения

DIV_ADBLOCK156">

Максвелл ввел понятие полного тока, равного сумме токов проводимости (а так­же конвекционных токов) и смещения. Плотность полного тока

jполн=j+д D /д t.

Введя понятия тока смещения и полного тока, Максвелл по-новому подошел к рас­смотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут,

т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуля­ции вектора Н (см. (133.10)), введя в ее правую часть полный ток I полн= сквозь поверхность S , натянутую на замк­нутый контур L . Тогда обобщенная теоре­ма о циркуляции вектора Н запишется в виде

http://pandia.ru/text/80/088/images/image016_0.jpg" width="186" height="59 src=">

Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

http://pandia.ru/text/80/088/images/image018_0.jpg" width="246" height="50 src=">

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью r, то формула (139.1) запишется в виде

http://pandia.ru/text/80/088/images/image020_1.jpg" width="117" height="50 src=">

Итак, полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):

D =e0eE ,

В= m0mН,

j =gE ,

где e0 и m0 - соответственно электриче­ская и магнитная постоянные, e и m - соответственно диэлектрическая и магнит­ная проницаемости, g - удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид

http://pandia.ru/text/80/088/images/image023_0.jpg" width="191" height="126 src=">

можно представить полную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

DIV_ADBLOCK160">

D 1n = D 2n , E 1t = E 2t , B 1n = B 2 n , H 1t= H2t

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн - перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано,

что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3 108 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D , Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.

Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

Контрольные вопросы

Что является причиной возникновения вихревого электрического поля? Чем оно отличается от электростатического поля?

Чему равна циркуляция вихревого электрического поля?

Почему вводится понятие тока смещения? Что он собой по существу представляет?

Выведите и объясните выражение для плотности тока смещения.

В каком смысле можно сравнивать ток смещения и ток проводимости?

Запишите, объяснив физический смысл, обобщенную теорему о циркуляции вектора напря­женности магнитного поля.

Запишите полную систему уравнений Максвелла в интегральной и дифференциальной формах и объясните их физический смысл.

Почему постоянные электрические и магнитные поля можно рассматривать обособленно друг от друга? Запишите для них уравнение Максвелла в обеих формах.

Почему уравнения Максвелла в интегральной форме являются более общими?

Какие основные выводы можно сделать на основе теории Максвелла?

В основе теории Максвелла лежат рас­смотренные четыре уравнения:

1. Электрическое поле мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю, а циркуляция вектора Е B оп­ределяется выражением, то цир­куляция вектора напряженности суммар­ного поляЭто уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н : Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами, либо переменными электрическими полями.

3. Теорема Гаусса для поля D : Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью, то формула запишется в виде

4. Теорема Гаусса для поля В: Итак,полная система уравнений Максвел­ла в интегральной форме: Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь:D = 0 E , В=  0 Н, j =E , где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса можно представитьполную систему урав­нений Максвелла в дифференциальной форме :

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

66. Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны.

Для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа:


-оператор Лапласа.

Т.е. электро­магнитные поля могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением (1) v - фазовая ско­рость, где с= 1/ 0  0 ,  0 и  0 - соответственно электрическая и магнитная постоянные,  и  - соответственно электрическая и магнитная проницаемости среды.

В вакууме (при =1 и =1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как > 1, то скорость распространения электро­магнитных волн в веществе всегда мень­ше, чем в вакууме.

При вычислении скорости распростра­нения электромагнитного поля по формуле (1) получается результат, достаточно хорошо совпадающий с эксперименталь­ными данными, если учитывать зависи­мость  и , от частоты. Совпадение же размерного коэффициента в со скоростью распространения света в вакуу­ме указывает на глубокую связь между электромагнитными и оптическими явле­ниями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электро­магнитные волны.

Следствием теории Максвелла являет­ся поперечность электромагнитных волн: векторыЕ и Н напряженностей электриче­ского и магнитного полей волны взаимно перпендикулярны (рис. 227) и лежат в плос­кости, перпендикулярной вектору v скоро­сти распространения волны, причем векто­ры Е , Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне век­торы Е и Н всегда колеблются в одина­ковых фазах (см. рис. 227), причем мгно­венные значения £ и Я в любой точке связаны соотношением  0 = 0 Н. (2)

Этим уравнениям удов­летворяют, в частности, плоскиемонохро­матические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями Е у 0 cos(t-kx+), (3) H z = H 0 cos (t-kx+), (4), где е 0 и Н 0 - соответственно амплитуды напряженностей электрического и магнит­ного полей волны,  - круговая частота волны, k=/v- волновое число, - начальные фазы колебаний в точках с ко­ординатой х= 0. В уравнениях (3) и (4)  одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама